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Optimal sunny selections of metric projections onto balls are determined for
the normed spaces Cp(Q) (I ""p""w) and L'(D,p), and their optimal Lipschitz
constants are computed. Moreover, the uniqueness of the optimal sunny selection
is proved for the Banach space C( Q). 'j', 1995 Academic Prm. Inc,

I. INTRODUCTION

Let X be a real normed vector space of dimension greater than I, and
let C be a nonempty closed convex subset of X. Denote by :1J>: X -+ 2(' the
metric projection onto C,

.?I'(x) = {ZEC: Ilx-zll= inf Ilx-yll}.
\' E C'

( 1.1 )

In general, it is possible that ;1J> is a multivalued mapping which is defined
on a proper subset of X. Define the optimal Lipschitz constant of :!J> by

where the infimum is taken over all selections P of;1J> and Kp(X) is the best
Lipschitz constant of P defined by

) IIPx - Pyl! }
Kp(X)=suP l Ilx-yll :x¥y.

Further, a metric selection T of 21 is said to be optimal if K T ( X) =K,,( X).
If C is equal to the unit ball

B= {XEX: Ilxll';;;; 1},
440
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then the radial projection

441

Rx = {X/IIX 11 ,

x,

if x¢B,

if x E B,
( 1.2)

is a selection of the metric projection y> defined on X such that
I ~ K R( X) ~ 2. It was proved by de Figueiredo and Karlovitz [8] and by
Thele [ 18] that identities K R( X) = I and K R( Xl = 2 hold if and only if the
Birkhoff's orthogonality is symmetric (this is equivalent to X being an
inner-product space, whenever the dimension of X is greater than 2), and
iff X is not uniformly non-square, respectively. Moreover, several other
properties and estimates of KR(X) were established in [3-6,9, 10, 14, 15].
Note also that optimal selections have applications in investigating the
minimal displacement problem, retraction problem onto spheres [11, 12l
and Fan's approximation principle for nonexpansive mapping [7, 14]. For
example, it has been proved in [14] that there exists an optimal selection
T of the metric projection onto the unit ball B of the Banach space L Y

with the Lipschitz constant equal to I, which enabled us to extend Fan's
C" -approximation principle [7] as follows: For every nonexpansive mapping
F: B -> L z, there exists x E B such that

IIFx--;rll = inf IIFx-yll.
rE B

In particular, Thele's result implies that K R( C( Q)) = 2. where C( Q) is the
Banach space of all continuous real valued functions on a compact
Hausdorff space Q equipped with the uniform norm

Ilxll = Ilxll Z = sup Ix(s)l·
SEQ

On the other hand, Goebel and Komorowski [12] observed that the mapping
T: C( Q) -> By defined by

(Tx)(s)=max{ -l,min{l,x(s)}}; XE C(S), SE Q, (1.3 )

is an optimal selection of the metric projection ;J;J onto the unit ball

By = {x E C( Q) : II x II u; ~ 1},

which has the best Lipschitz constant KT(C(Q)) equal to I. This optimal
selection was applied in [II, 12] to construct retractions of C( Q) onto the
unit sphere with better Lipschitz constants than the constants which could
be obtained by using the radial selections. In view of inequality (2.6) with
p = 2, the selection T of ;Y> is called the orthogonal projection (selection).
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In Section 2, we prove that the orthogonal projection T is also an
optimal selection of the metric projection :5P: Cp ( Q) -+ 2B, (C = Bex) in ( 1.1 ))
which has the best Lipschitz constant K T( Cp ( Q)) equal to I, whenever
I ~ p < (jJ and Cp ( Q) is the vector space C( Q) with the LP-norm

(1.4 )

where)1 denotes a positive Borel measure on Q. Moreover, we show that
the optimal selection T of the metric projection ;JJ>: C( Q) -+ 2 B

"X is unique in
the class of all sunny selections P of fJ/J.

In Section 3, we use orthogonal projections to determine the optimal
selections and compute the optimal Lipschitz constants for the unit ball B I

of the real Banach space L I(Q,)1) of all )1-integrable functions (equivalence
classes) on Q, where (Q,)1) is a positive measure space. In this case, by
Thele's result we have again K R(L I(Q, II)) = 2. However, the optimal
L I-case is completely different from the optimal C( Q)-case. For example, we
prove that K'I'(L1(Q,p)) <2 if and only if LI(Q,p) is a finite dimensional
space.

2. OPTIMAL SELECTIONS IN Cp ( Q)

Throughout this section, we assume that T is the orthogonal selection of
the metric projection ;JJ>: C( Q) -+ Bee By (1.3) we have

T ) {
sgn x(s),

x(s =
x(s),

where sgn a= allal if a of. 0, sgn 0 = 0, and

if sEM(x),

otherwise,
(2.1 )

M(x) = {SE Q: Ix(s)1 > I}.

Hence we get

(2.2)

Q\M(x) = Z(x - Tx) := {s E Q : x(s) = Tx(s)}. (2.3)

Recall that a selection P of the metric projection fJ/J: C( Q) -+ 2Bx is said to
be sunny [13] if

(2.4)

for all x E C( Q) and rJ. ~ 0, where

(2.5)
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THEOREM 2.1. The orthogonal projection T is an optimal selection of the
metric projection :J/J: Cp ( Q) --> 2 By for 1:( p:( w. Moreover, T is sunny and

Proof The inequality

la - sgn al :( la - bl

holds for all real a and b such that lal ~ 1 and Ibl :( 1. Hence one can insert
a=x(s) and b=y(s), and use (2.1)-(2.3) to get

Ix(s) - Tx(s)1 :( Ix(s) - y(s)1

for all SEQ, X E C( Q), and y E B x ' This in conjunction with the
monotonicity of the norm (1.4) yields

(2.6)

for all y E B x' i.e., T is a selection of the metric projection fY': Cp ( Q) --> 2 By.

Similarly, one can apply (2.1 )-(2.3) together with the inequalities

and

to obtain

Isgn a - sgn bl :( la - bl;

la-sgnbl:( la-bl;

lal, \bl ~ 1,

lal :( 1, Ibl ~ 1,

for all x, y E C( Q). Since Tx = x on B x' it follows that T is optimal and
K T ( Cp( Q)) = 1. Since T is identical with the single valued metric projection
of the inner-product space C2( Q) onto the convex subset B x , it follows
that T is sunny [13, 17]. This completes the proof. I

In the following, the symbol II ·11 denotes the uniform norm 11·11 x . Since
Rx belongs to fY'(x), it follows from (1.2) that

Ilx-Pxll = Ilx-Rxll = Ilxll-l (2.7)

for all x E C( Q)\B'l~ and Px E ;2I'(x). Now, we can establish the main result
of this section.

THEOREM 2.2. A sunny optimal selection P of the metric projection
.Y': C( Q) --> 2B, is unique, i.e., P = T.
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For the proof, note that the sunny optimal selection P satisfies (2.4) and
the following characteristic inequalities:

and

Moreover, denote

Ilx-Pxll ~ Ilx- yll,

IIPx-Pyll ~ Ilx-yll;

YEB f ,

X,YEC(Q). (2.8)

E(x) = {SE Q: Ix(s)1 = Ilxll}.

Since Q is compact, the set E( x) is nonempty for every x E C( Q). Addi­
tionally, we have

Px(s) = sgn x(s), (2.9)

whenever sEE(x) and Ilxll > 1. Indeed, by (2.7) and the fact that
IPx(s)1 ~ I we obtain

Ilxll - I = Ilx ~ Pxll ~ Ix(s) - Px(s)1 = Ix(s)l- Px(s) sgn x(s).

Hence Px(s) sgn x(s) ~ I, which gives (2.9). In the following three lemmas,
it is assumed that P is a sunny optimal selection of ;,!J>: C(Q) -> 2 B

,.

LEMMA 2.1. /lllxll>1 thenE(x)=E(x-Px).

Proof If SE E(x) then by (2.7) we have

Ilxll- I = Ilx - Pxll ~ Ix(s) - Px(s)1 ~ Ilxll - I.

Hence we get E(x) ~ E(x - Px). For an indirect proof of inclusion E(X);2
E(x - Px), we assume that s E E(x - Px)\E(x) and Ix(s)1 > 1. Then one can
use (2.7) and the fact that IPx(s)1 ~ I to get

Ix(s)l- Px(s) sgn x(s) = Ix(s) - Px(s)1 = Ilxll - 1. (2.10)

Next, we define Y E C( Q) by

{

IIX11 + Ix(s)1
2 sgn x(u),

y(u) =
x(u) +]xll-1x(s)1 x(u)
. 2 Ix(s)I'

if Ix(u)1 ~ Ix(s)l,

otherwise.
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If Ix(u)1 ~ Ix(s)1 then we have

ly(u)1 = (11xll + Ix(s)1 )/2

and

Ix(u) - y(u)1 = Ilx(u)l- (11xll + Ix(s)1 )/21 ~ (11xll -lx(s)1 )/2.

Otherwise, we have

ly(u)1 ~ Ix(u)1 + (11xll -lx(s)1 )/2 ~ (11xll + Ix(s)1 )/2

and

Ix(u) - y(u)1 ~ (11xll -lx(s)1 )/2,

445

where the last inequality can be replaced by the equality for u = s. Hence
we obtain

IIYII = ly(s)1 = (11xll + IX(5)1)/2 > I

and

Ilx - yll = (11xll -lx(s)1 )/2.

Therefore, by (2.9) we get

Py(s) = sgn y(s) = sgn x(s).

This together with (2.10) yields

IIPx - Pyll ~ I[Px(s) - Py(s)] sgn x(s)1 = Ilxll-lx(sYI.

Since s rf: E( x), it follows from (2.12) that

IIPx-Pyll > Ilx-yll,

which contradicts (2.8). Thus we have

Ix(s)1 = Ilxll,

(2.11 )

(2.12)

(2.13 )

whenever XEc(Q) is such that sEE(x-Px) and Ix(s)l> I. Finally, if
Ix(s)i~l and sEE(x-Px), then (2.7) gives

Ix(s) - Px(s)1 = Ilxll - I > O.
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Hence IX,,(s)l-> 00 as IX -> 00. Choose IX> 0 so large that IX,,(s)1 > 1. Then
(2.4) and (2.5) yield

Ix,,(s) - PX,,(s)1 = IXlx(s) - Px(s)1 = IX Ilx - Pxll = Ilx" - Px"ll. (2.14)

Thus sEE(x,,-Px,,), and we can apply (2.13) to get IX,,(s)1 = Ilx"ll. Hence
one can use (2.4) and (2.9) to derive

Px(s) = Px,,(s) = sgn x,,(s) = sgn[x,,(s) - Px,,(s)] = sgn[x(s) - Px(s)]

and

0< Ix(s) - Px(s)1 = [x(s) - Px(s)] Px(s) = x(s) Px(s) - I ~ O.

This contradiction completes the proof. I

LEMMA 2.2. If Ilxll > I and IX ~ 0, then we have

Ilx,,11 = (1.. Ilxll + I - (1...

Proof Take an element s E E(x), and use (2.9) to get

Ilx,,11 ~ IX,,(s)1 = IIX.x(s) + (1 -IX) sgn x(s)1 = IX Ilxll + I -IX> 1.

Hence, as in (2.14), we conclude that sEE(x,,-Px,,). Thus Lemma2.1
gives Ilx,,11 = IX,,(s)l, which completes the proof. I

LEMMA 2.3. We have sgn[Px(s)] sgnx(s)~O.

Proof Without loss of generality, we assume that II x II > 1. If the desired
inequality does not hold, then we have

sgn[Px(s)] sgn x(s) =-1

and

-I ~ -IPx(s) 1= Px(s) sgn x(s) < o.

By Lemma 2.2 and (2.5) it follows that

o~ Ilx,,11 +x,,(s) sgn x(s) -> I-IPx(s)l,

(2.15)

(2.16)

as IX -> O. Therefore, one can find a positive IX < I which is so small that
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and

sgn x,,(s) = sgn PX(s).

In particular, the last identity in conjunction with (2.15)-(2.16) yields

447

PX(s) sgn x(s) = -IPx(s)1 < -lx,,(s)1 =x,,(s) sgn x(s). (2.17)

Next, define y in C( Q) by

if uEA,

otherwise,

where

A = {UE Q: x,,(u) sgn x(s) ~x,,(s) sgn x(s)}.

If U E A then we have

and

IIx"ll- x,,(s) sgn x(s) Ilx,,11 + x,,(s) sgn x(s)
- 2 ::::; x,,(u) sgn x(s) - 2

l!x"I!-x,,(s) sgn x(s)
::::; 2 .

Otherwise, we get

Ilx,,11 + x,,(s) sgn x(s)
::::; 2

and

/x,,(U)- y(u)/ = (IIx"II -x,,(s) sgn x(s))/2.

By the first and third inequalities we obtain

I!YII = (1Ix,,11 +x,,(s) sgn x(s))/2 < 1.

640i!Q ....~-9
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Similarly, the second and fourth inequalities yield

Ilx", - yll = (1Ix",11 - X(X(S) sgn x(s»/2.

Hence it follows from the strict inequality (2.17) that

IIPy - Px",11 ~ [y(s) - Px(s)] sgn x(s)

Ilx(X1l + x",(s) sgn x(s) ( )
= 2 -Px(s)sgnx .I'

which contradicts (2.8). I
Proof of Theorem 2.2. In view of (2.1), we have to show that

Px(s) = sgn x(s),

and

Px(s) = x(s),

First, assume that

if Ix(s)1 ~ I,

if Ix(s)1 < I.

Px(s) #sgn x(s)

Then by Lemma 2.3 we derive

0:( Px(s) sgn x(s) < I

Since we have

and

and

Ix(s)l ~ I.

IPx(s)1 < I.

x",(s) sgn x(s) = IX(X(S) - Px(s) Sgll x(s) + Px(s) sgn x(s)

=·iX Ix(s) - Px(s)1 + Px(s) sgn x(s)

> Px(s) sgn x(s) ~O,

it follows that

and IPx(s)1 < IX",(s)l, (2.18)

whenever IX> O. Moreover, by Lemma 2.2 and (2.5) we obtain Ilx(X11 -+ I,
and x(X(s) -+ Px(s), as ex. -+ 0 +. Hence there exists ex. > 0 for which

(2.19)
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Now define y" E C( Q) by
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otherwise.

Since y" is defined exactly as the function y in the proof of Lemma 2.1, it
follows from (2.11) and (2.12) that

and

This in conjunction with (2.18) and II y", II < I (see (2.19)) yields

IIPx", - pY,,1I ~ [y,,(s) - PX,,(s)] sgn x",(s)

= IIx",1I +2'X",(S)/-IPx(s)1

Ilx",11 + Ix",(s)I_1 (')1 = II -,' II> 2 X",.I X'" J""

which contradicts (2.8). Therefore, we have

Px(s) = sgn x(s),

whenever Ix(s)1 ~ 1. Finally, suppose that

(2.20)

Then we have

Px(s) # x(s) and Ix(s)1 < 1.

and sgn x",(s) = sgn(x(s) - Px(s))

for sufficiently large IX > O. Hence, by (2.4) and (2.20), we derive

Next, we apply Lemma 2.3 to get

0::;; sgn(x",(s)) sgn(PxAs)) = sgn(x(s) - Px(s)) sgn Px(s)

= -sgn(Px(s)) sgn Px(s) = -I,

which leads to a contradiction and finishes the proof. I
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3. OPTIMAL SELECTIONS IN L \Q, Ii)

First, we are going to construct the orthogonal selection onto the closed
unit ball B] in the Banach space L I(Q, Id of all real valued fl-integrable
functions (equivalence classes) defined on a positive measure space (Q, fl)
and equipped with the norm

Ilxll = J Ixl dfl·
Q

For this purpose, we need the following elementary properties of the
nondecreasing function

f(t)=J min{lxl,t}dli, t~O,
Q

LEMMA 3.1. The function f is a nondecreasing concave continuous function
such that f(O) = 0 and f(t) -> IIxll, as t -> oc.

Proof If Ix(s)1 ~ At l + (I - A) t2 and 0 ~ A~ I, then we have

min{ Ix(s)l, At l + (I - A) t 2 }

=A.t] +(1-,1) t2

~ Amin{ Ix(s)j, td + (1- X) min{ Ix(s)l, t 2 }.

Otherwise, we have

min{ Ix(s)l, At] + (I - A) t2 }

= A. IX(5)1 + (I - A) Ix(s)1

~)"min{ Ix(s)j, td +(I-A)min{lx(s)j, t2 }.

By integrating these inequalities, we conclude that f is concave, and hence
continuous on (0, 00). The functions

g,(s)=min{lx(s)l,t}, sEQ,

belong to L1(Q,fl) and g((s)tO pointwise, as ttO. Hence the Monotone
Convergence Theorem [1] implies that

f( t) = J g, dli -> f( 0) = 0,
Q

as t t 0,
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i.e., f is also continuous at t = O. Finally, to compute the limit of f at
infinity, note thatf(t) = Ilxll, whenever x is bounded almost everywhere on
Q and t ~ Ixl almost everywhere on Q. Otherwise, it follows that

almost everywhere, as t i 00.

Hence one can apply the Monotone Convergence Theorem to get f(t)-+
Ilxll as t -+ 00, which completes the proof. I

By Lemma 3.1 the equation

f min{ lxi, t} df.1. = Ilxll - I
Q

(3.1 )

has the unique solution t = t(x) > 0 for each x E L I(Q,;1) with Ilxll > 1.
Note that this equation can be rewritten in the following equivalent form

where

f Ix-tsgnxldf.1.=I,
A,(x)

A/(x) = {SEQ: Ix(s)1 ~ t}.

(3.2)

(3.3 )

Now, let t=t(x»O be the solution of equation (3.1), where xEL 1(Q,f.1.)
and Ilxll > 1. Then we define the mapping T by

T {
X(S) - tsgn x(s),

x(s)=
0,

Moreover, we put

Tx=x,

if sEA,(x),

otherwise.
(3.4 )

(3.5 )

whenever Ilxll ~ 1.

By (3.2) and (3.4) it follows that II Tx II = I, i.e., T is a projection onto the
closed unit ball B 1 • If x E L I(Q, f.1.) (\ e(Q, f.1.) and Ilxll > I, then (3.2)-(3.4)
yield

f (x - Tx)( Tx - y) df.1.
Q

= - f xy df.1. +f tsgn(x)(x - tsgn x - y) df.1.
Q\A,lxl A,(x)
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= - f xy dll + t f Ix - tsgn xl dll
11\A,(x) A,lx)

-t f ysgn x dll
A,(x)

?-t-t(f Iyldll+f IY1dll)=t(1-IIYII)?-O,
Q\A,(x) At(x)

whenever yEB l nL 2(Q,Il). By the well-known characterization of best
approximations in an inner-product space by elements of convex sets, it
follows that Tx is a best approximation to x by elements of the unit ball
B1n L 2(Q, II) in the inner-product space L I(Q, II) n L2(Q, II) with L 2-norm.
Therefore, the projection T: L' (Q, II) -> B, is called the orthogonal projection.
Clearly, its restriction

(3.6)

is sunny.

THEOREM 3.1. The orthogonal projection T is a selection of the metric
projection :JfJ: L '(Q, Jl) -> 2 B,.

Proof By (3.2)-(3.4) we have

Ilx - Txll = J Ixl dll + f t dll
Q\A/(x) A,(x)

= f Ixl dll- f Ix- tsgn xl dll
Q A,(x)

= Ilxll-l;:::; Ilx- yll,

whenever Ilxll > I and y E B,. This completes the proof. I

An explicit formula for the orthogonal selection can be given in the
special case of the Banach space I~ (n ?- 2) which consists of all real n-tuples
x == (Xl' ..., xn ) equipped with the norm

n

Ilxll = L IXkl·
k~l

For a given x El:, with Ilxll > 1, let m(x) = (m" ... , mn) be a rearrangement of

Q = {I, ..., n}
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such that

Moreover, let r = r(x) be the largest integer for which

ieA

where

A = A(x) = {m l , ... , mr }.

Then by (3.7) we have

453

(3.7)

(3.8 )

(3.9)

kEA, (3.10)
IE A

and

r Ixkl < L Ix;l-l,
ieA

Indeed, if (3.11) is not satisfied, then we obtain

(r + 1) Ix nt, + I I~ I: Ix; I - 1+ Ix nt, + I I,
iEA

which contradicts the definition of r. In the following, we denote

Tx=(Tx l , ••• , Tx,,)

for x E I~.

(3.11 )

COROLLARY 3.1. The orthogonal selection T of the metric projection
YJ: I ~, -> 2 8

] is given on I~\B I by the formula

if kEA,

if kEQ\A,

where r=r(x) and A =A(x) are defined by (3.7)-(3.9).

Proof Let II be the counting measure on Q = { 1, 2, ..., n}, and let

t=( L Ix;l-l) r.
IE A
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Then t satisfies equation (3.2). Indeed, by (3.10) and (3.11), we have t > 0
and

L IXk - tsgn xkl = L (Ixkl- t) = I,
kEA kEA

which completes the proof. I

As in the case of C( Q) space, the orthogonal selection T: I ~ ~ B 1 IS

optimal.

THEOREM 3.2. The orthogonal projection T is an optimal selection of the
metric projection 9: I~ ~ 2 B1

. Moreover, T is sunny and

I II 2(n-l)
Kr(l n) = K.j>( n) = ., n

For the proof we need the following two lemmas.

LEMMA 3.2. If x=(1/(n-I), ... ,I/(n-I)) and y=(l/(n-I), ... ,
I/(n - I), 0) are elements of I~, then we have

2(n - I)
IITx-Tyll = Ilx-yll·

n

Proof Since IIYII=I, we have Ty=y. Moreover, we have r(x)=n and
A(x) =Q in (3.8) and (3.9). Hence, by Corollary 3.1, we get

Therefore, we have

2
IITx- TYII =-

n

which completes the proof. I

LEMMA 3.3. The inequality

and

k = I, ..., n.

I
Ilx-yll=-I'n-

2(n - I)
IITx-Tyll~ Ilx-yll

n

holds for all x, y E I:,.
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Proof Let x and y (11xll > 1) be arbitrary elements in l~. Without loss
of generality, we assume that coordinates of x (and y) are arranged and
their signs are changed in such (the same) way that

(3.12)

Note that

A=A(x)={I, ... ,r}

for some r (1 ~ r ~ n), and that

kEA, (3.13 )

which follows immediately from (3.10) and Corollary 3.1. Moreover, we
have

(3.14 )

where d = II x II - 1 and the left hand side is equal to 0 for r = n. Indeed, by
taking the sum of inequalities (3.11), we derive

Hence we get

which finishes the proof of (3.14). We denote by oc = card B the number of
elements of the set

B= {kEA: TXk~yd.

Note that oc~ 1, whenever Ilyll ~ 1. Indeed, if B=¢i then, by (3.13) we get
Yk>TXk~O (k=I, ... ,r) and 1~IIYII>IITxll=l, a contradiction. Now,
denote

and suppose first that II y II ~ 1. Then apply Corollary 3.1 together with (3.5)
and (3.12)-(3.14) to get

640/82/.1-10
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IITx- TYII = IITx- yll
n

= L (Xk-f-Yk)+ L (Yk-xk+ f )+ L IYkl
k E B k E A \B k ~ r + I

= Ilx - yll + (I - ~:) (1Ixll- I).

Hence we derive

IITx- Tyll ~ Ilx-yll,

whenever n ~ 2ex.. Otherwise, we have

II Tx - rvll ~ Ilx - yll + (I - ~~) Ilx - yll

= 2(I1-x) Ilx _ yll ~ 2(11- I) Ilx _ yll,
n n

which completes the proof when Ilyll ~ I.
Thus it remains to consider the case when II YII > I. Without loss of

generality, x and y can be interchanged. Therefore, in addition to (3.12), we
assume that

L x i ::?- I IYil,
iEA IE A

(3.15 )

where A=A 1 uA 2 , A]=A(x)={l, ... ,r}, and the set A 2 =A(y)=
{m I' ... , mp } with p = r( y) is defined by formulae (3.7) and (3.8), in which
x is replaced by y. Denote

ex. = card D,
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Then we have C={m1, ...,mq }, O:;:;oc:;:;q:;:;min{p,r}, A\A,=A 1\C, and
A \A 1 = A ,\C. Since inequalities (3.11) give

we get

r I. .xk:;:;(P-q)dl=(P-q)( I x k -l- L Xk)'
kEA,\( kEA kEA\.4,

Hence we have

no I xk:;:;(no-r)CI'
k E A,\C

where no = r +p - q and

C, = I Xk -1 = d, + I Xk·
k E A k E A \A,

Similarly, we use inequalities

(3.16 )

(3.17)

in order to get

no I IYkl:;:;(no -p)C1'
kEA,\C

where

C1= I IYkl~l=d1+ L IYkl·
kEA kEA\A,

Now, by Corollary 3.1 we obtain

(3.18)

(3.19)
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~ d, ~ d?
+ L. (Xk-.)/k)-ex-+ L. ---='sgnYk

kED r kEDP

+ L U'k-xd+ I (d,_d2sgnYk)
k E C\D k E C\D r P

~ d2+ I (IYkI-xd+ L. xk-(p-q)-·
kEA2\C kEA,\C P

If k E C\D, then it follows from (3.10) that

and

Hence we have

for kE C\D.

This in conjunction with (3.16)-( 3.19) yields

(
d, d2) ~ d2+(q-ex) --- + L. Xk-(P-q)-
r P kEA,\C P

d l ~:(;llx-yll+-(2q-2ex-r)+ L. Xk
r kEA~C

d? ~
+---='(2ex-p)+ 1...- IYkl

p kEA\\C

c\ 2 ~= Ilx-yll +-(2q-2ex-r)+-(r+ex-q) L. Xk
r r kEA,\C

C2 2
+- (2ex - p) + - (p - ex) I IYk I

p P kEA\\C

c\ 2c I no-r:(; Ilx - YII + - (2q -2ex -r)+- (r + ex -q)--
r r no

c? 2C2 no - p
+---='(2ex-p) +-(p-ex)--

p p no

r+2rx-p-q
=llx-YII+ (C2 -C1)·

no
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To complete the proof, it remains to show that

r + 20c - P - q n - 2
~~--'"~-='(C2 -c1) ~~-llx- YII·

no n

459

(3.20)

Note that I~no=r+p-q~n. Moreover, by (3.15) we have Cl~C2'

Hence the inequality is true when r + 20c - P - q ~ O. Otherwise, by (3.17)
and (3.19) we get

(3.21 )
iEA

Additionally, the inequality

p +q- r - 20c = 2(p - oc) - no ~ no - 2

holds if and only if

(3.22)

The last inequality is obvious when p < 11 0 , Otherwise, we have 11 0 = P ~
q = r, and so

C = A I = {I, ..., r} and

This in conjunction with (3.13) and Corollary 3.1 yields

r r

L TXk= II Txll = I = I ITYkl ~ L IrVkl,
k~ I keA2 k= I

which is possible only when TXk ~ TYk for some k with I ~ k ~ r. This
means that D i= ifJ, i.e., oc ~ 1. Hence the inequality p - oc + 1~ 11 0 is also true
in the case when p = 11,,, which completes the proof of (3.22). By (3.21) and
(3.22), the proof of the first inequality in (3.20) is completed. I

Proof of Theorem 3.2. Let T be the orthogonal selection of the metric
projection :?J: l~ ---+ 281

. Then the sunny property of T follows immediately
from (3.6). Moreover, by Lemmas 3.2 and 3.3 we have

Hence it remains to find an element x E I:. \B I such that, for every
z = Px E :?J( x), there exists Y which satisfies II Y II = I and

2(11-1)
liz - yll ~ II Tx - .j/II = Ilx - yll·

n
(3.23)
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For this purpose, put
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. ( 1 I) I.\ = --I' ""--1 E/nn- n-
and

. 1
Y'=X---

1
ei ,

n-

where C i is the unit vector in l,~ with its ith coordinate equal to 1. It is clear
that Ilyill = 1. Moreover, by the proof of Lemma 3.2 we have TXk = l/n for
k = I, ..., n. Hence we easily compute that

2
IITx- y'll =­

n
and

. 1
Ilx-y'll =-,

n-I
(3.24)

which proves the identity in (3.23) for y = yi (i = I, ... , n).

To construct the required y, note that the assumption Z E 2I'(x) implies
that z;?: 0, Ilzll = I, and Zj?: I/n for some j E Q = { I, ..., 11}. Moreover, we
denote

where

If we put C i = card A; (i = 1,2,3), then we get

';'i,

and

I Zi+~+~~ L Zi+ L Z;+Zj=l.
iEAI vA2 n - n ;eAI vA2 iEA3

Hence it follows that
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2 ( C3 I) 2=-+2 1- I: Zj--- -- ;:,-

n jEA\ uA 2 n-I n n
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This together with (3.24) gives the inequality in (3.23) for y = y i . Hence the
proof is finished. I

Now, we show the optimality of the orthogonal selection T of the metric
projection Y: L 1{.Q,/d->2 B

\ in the case when the Banach space L1{.Q,p) is
infinite dimensional. Since Tx E Y(x), we have

IIx- Txll';;; Ilx- yll

for all y E B 1• By the triangle inequality and the fact that Ty = y, it follows
that

II Tx - Tyll ,;;; 2 Ilx - yll,

whenever x,YEL1(.Q,p), Ilxll > I, and Ilyll,;;; I.

(3.25)

THEOREM 3.3. Let the Banach space L I(.Q, p) be infinite dimensional.
Then the orthogonal projection T is an optimal selection of the metric projec­
tion:!l': L 1(.Q,p)->2 B

\. Moreover, T is sunny and

Kr(L I(.Q, p)) = Ky>(L '(.Q, Il)) = 2.

For the proof, recall that t = t{x) > 0 denotes the unique solution of the
equation

f min{ lxi, t} dp == Ilxll- I,
!l

whenever IIxll > I. Moreover, extend t(x) to the unit ball by setting

t(x) =0,

Then the orthogonal selection can be written in the form

(3.26 )

(3.27)

Tr: = (x - t(x) sgn{x)),{AI'I'

where ,(A(x) denotes the characteristic function of the set

A(x) = {s E.Q : Ix(s)1 ;:, t{x)}.

The function x -> t(x) has the following nice properties.
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LEMMA 3.4. The function x-> t(x), xEL 1(fJ,f.1.), is a convex continuous
function which satisfies

o~ t( Ixl) = t(x) ~ tty),

whenever Ixl ~ Iyl·

Proof Note that the constant t(x) is integrable on A(x), and so
f.1.(A(x)) < 00, whenever Ilxll > I. Now, suppose that x, y ~ 0, Ilxll > I,
O<X< 1, and x;.=Xx+(I-X) y!jB 1 • Then we have

= IlxJ -1 ~X(lIxll-1)+(l-X)(llyll-l)

:( XJ min{ x, t(x)} dp + (I - X) J min{ y, tty)} df.1.
Q Q

:(f min{x).,Xt(x)+(l-X)t(y)} df.1..
Q

Since the function

t -> f min{x;., t} df.1.
Q

is nondecreasing, it follows that

t(x;.):( At(x) + (1- X) tty).

In view of (3.27), this inequality is also true when either x;. E B], or
x, y E B 1. Hence the function x -> t(x), x ~ 0, is convex. Clearly, if x E B I

then t(x):( t( y) for all y. Further, suppose that 0:( x:( y and Ilxll > I. If
t(x) > tty) then one can use (3.2) together with A(x) s: A(y) to get

1= f (x - t( x)) df.1. < f (y - t( y)) df.1. = I.
A(x) A(y)

Therefore, we have t(x)~t(y), whenever O:(x:(y. Since, by (3.26)-(3.27),
we have t( Ixi) = t(x), it follows that

t(Ax + (I-A) y) = t(I},x + (1-X) yl)

~ t(l Ixl + (1- l) Iyl):( At(x) + (1 - A) t(y)
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for all x, y E L t(Q, fl) and AE (0, I). Thus the function x ~ t(x) is convex
on L1(Q, fl). Moreover, we have t(B t ) = {O}. Therefore, in view of
Theorem 1.3 [2, p. 90], the function x ~ t(x) is continuous on L 1(Q, fl),

which completes the proof of the lemma. I
Proof of Theorem 3.3. First we prove continuity of the orthogonal

selection T. For this purpose, note that the formula (3.4) directly yields
T( Ixl ) = ITxl. Hence it is sufficient to prove continuity of T only for x ~ O.
For this purpose, suppose that x~O and x" ~x in L1(Q,fl). In view of
(3.25), we can assume that Ilxll> I and Ilx,,11 > 1. Then by (3.4) we get

II Tx - T(x,,) II ~ f Ix - t(x) - x" + t(x,,)1 dfl
A(x)" A(x.)

+f (x - t( x)) dfl
(!}\A(x.II" A(x'

+f (lx"l-t(x,,))dfl· (3.28)
(O\A(x)" Alx.'

Next, take e such that 0 < e < t(x). Since Ilx,,11 ~ Ilxll and t(x,,) ~ t(x), there
exists an integer n e such that

and t(x) - e~ t(x,,) ~ t(x) + e

for every n ~ nt • If n ~ ne then we have

x(s) - t(x) ~ x(s) - t(x,,) + e < x(s) - x,,(s) + e~ Ix(s) - x,,(s)1 + e,

whenever sE(Q\A(x,,))nA(x), and

Ix,,(s)l- t(x,,) ~ Ix,,(s)l- t(x) + e < Ix,,(s)1 - x(s) + e~ Ix(s) - x,,(s)1 + e

for all sE(Q\A(x))nA(x,,). Additionally, we have

(t(x) -c) fl(A(x,,)) ~ f t(x,,) dfl
A(,x-II )

~ f Ix,,(s)1 dfl ~ Ilx,,11 ~ Ilxll + e.
A(x.)

Now, we can insert these three inequalities into (3.28) to get

II Tx - T(x,,) II ~ 3 Ilx - x,,11 + It(x) - t(x,,) Ifl(A(x))

I Ilxll + 81
+e l fl(A(x)) + t(x)-e
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for all n;?;nc Sincejl(A(x))<oc, we can let [;--.0 to finish the proof of
continuity of T on L I (Q, Ii).

If x, Y E L l(Q, p), then one can find sequences X n and Yn of p-integrable
simple functions such that X n --. x and Yn --. Y in the metric of L1(Q,jl).
Moreover, for each n, we can embed X n and Yn in a finite dimensional sub­
space of Ii-integrable simple functions of the form

Yn

L (XkXA.ljl(A k);
k~1

(Xk E R,

where jl( A k) > 0 and A k (J Aj = ¢i for k i= j. Since this subspace is isometri­
cally isomorphic with I:" we can use Lemma 3.3 to get

By continuity of T, it follows that

IITx-Tyll ~21Ix-YII,

i.e., K r( L I(Q, f.1.)) ~ 2. On the other hand, the infinite dimensional Banach
space L l(Q, f.1.) contains the n-dimensional subspaces I !,(A) (n = 2, 3, ... ) of
p-integrable simple functions x of the form

n

X = I XkXAklli(A k),
k=l

where jl(A k ) > 0 and A k (J A j = ¢i for k i= j. Hence Lemma 3.2 yields
KT(L l(Q, p)) = 2.

To show the optimality of T, let P be a selection of the metric projection
2J: L 1(Q,IL)--.2 B1

• Moreover, suppose that xEI:JA) is defined by

Then we have

Px(s) = 0

almost everywhere on Q\A, where

(3.29)

(3.30)
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Indeed, suppose that Px( s) # 0 on a measurable subset C of Q \A such that
fl( C) > O. Since P is a selection of fJIJ, we have II Px II = 1 and

Ilx-Pxll:( Ilx-yll

for all y E B]. Equivalently, in view of the Kolmogorov criterion [16J, we
have

f,Lv) := I IPx - yl dfl + J (Px - y) sgn(x - Px) dlJ ~ 0
z U\Z

for all y E B I' where

z= {SEQ: x(s)=Px(s)}.

In particular, if y =XU\CPx then II..vll ~ IIPxl1 = 1 and

T,(y) = - Ie IPxl dfl <0.

This contradiction proves (3.30). Since IIPxl1 = 1, it follows from (3.30) that
:::i ~ lin for some j, where::: = (:::], ... , :::n), 11:::11 = 1, and

k= I, ...,n.

Define yJ E 1;,( A) by

I JJ

Vi=-- ~ X IIJ(A ). 1 L.. •Ak k
n - k=]

k ¥}

and note that

and
. 1

Ilx-yJII =-.
n-l

(3.31 )

Moreover, as in the proof of Lemma 3.2, we show that

where x is defined by (3.29). Hence we get

. 2
II Tx - y' II = ­

n
(3.32)
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and
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IIPx - yJ11 = f .IPxl d{i + I f .IPx - yJI dp
A, i¥j AI

? L
J

IPxl dp + i~J It (jPxl-lyJi) dPI

=zJ+ L.IZi-~I·
i#J n

Now, we can repeat mutatis mutandis the second part of the proof of
Theorem 3.2 to get

. 2
IIPx-yJII ?-.

n

Hence it follows from (3.31) and (3.32) that

. . . 2(n - 1) .
IIPx- PyJl1 = IIPx - yJII? IITx - TyJl1 = Ilx- yJ11

n

for every selection P of !?J. Since 11 can be arbitrarily large, we have
Ky>(L I(Q, {i))? 2, which completes the proof of the optimality of T.
Finally, by (3.6) we have

T(x)=T(rt.x+(l-rt.) Tx), rt.?0,

for every {i-integrable simple function x. Since the set of all such functions
is dense in L I (Q, p), we can use continuity of T to prove the sunny
property for T. I

Recall that we have K R(L I (Q,p»=2 for the radial selection R of the
metric projection 2fJ: L I(Q, p) -+ 2BI . Clearly, R is also sunny. Therefore, it
follows from Theorem 3.3 that Theorem 2.2 is not true for the infinite
dimensional Banach space L I(Q, p). Finally, note that the orthogonal
selection T: II -> B I differs from the radial selection R by its finite dimen­
sional behaviour. More precisely, if xE1 1 and Ilxll > 1, then by (3.4) we
have

Tx = (Tx l , ... , Tx n , 0, 0, ... ),

where n=max{k: IXkl>t(x)} <CYJ. However, this IS not true for
Rx = x/llxli in general.
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