Optimal Sunny Selections for Metric Projections onto Unit Balls

H. K. Hsiao and R. Smarzewski

Department of Mathematics, Mariae Curie-Skkodowska University, 20-031 Lublin, Poland

Communicated by Frank Deutsch
Received March 10, 1994: accepted in revised form September 7, 1994

Abstract

Optimal sunny selections of metric projections onto balls are determined for the normed spaces $C_{p}(Q)(1 \leqslant p \leqslant \infty)$ and $L^{1}(\Omega, \mu)$, and their optimal Lipschitz constants are computed. Moreover, the uniqueness of the optimal sunny selection is proved for the Banach space $C(Q)$. 1995 Academic Press. Ins.

1. Introduction

Let X be a real normed vector space of dimension greater than 1 , and let C be a nonempty closed convex subset of X. Denote by $\mathscr{P}: X \rightarrow 2^{C}$ the metric projection onto C,

$$
\begin{equation*}
\mathscr{P}(x)=\left\{z \in C:\|x-z\|=\inf _{y \in C}\|x-y\|\right\} . \tag{1.1}
\end{equation*}
$$

In general, it is possible that \mathscr{P} is a multivalued mapping which is defined on a proper subset of X. Define the optimal Lipschitz constant of \mathscr{P} by

$$
K_{\mathscr{Y}}(X)=\inf K_{P}(X)
$$

where the infimum is taken over all selections P of \mathscr{P} and $K_{P}(X)$ is the best Lipschitz constant of P defined by

$$
K_{P}(X)=\sup \left\{\frac{\|P x-P y\|}{\|x-y\|}: x \neq y\right\} .
$$

Further, a metric selection T of \mathscr{y} is said to be optimal if $K_{T}(X)=K_{, y}(X)$.
If C is equal to the unit ball

$$
B=\{x \in X:\|x\| \leqslant 1\},
$$

then the radial projection

$$
R x= \begin{cases}x /\|x\|, & \text { if } \quad x \notin B, \tag{1.2}\\ x, & \text { if } \quad x \in B,\end{cases}
$$

is a selection of the metric projection \mathscr{P} defined on X such that $1 \leqslant K_{R}(X) \leqslant 2$. It was proved by de Figueiredo and Karlovitz [8] and by Thele [18] that identities $K_{R}(X)=1$ and $K_{R}(X)=2$ hold if and only if the Birkhoff's orthogonality is symmetric (this is equivalent to X being an inner-product space, whenever the dimension of X is greater than 2), and iff X is not uniformly non-square, respectively. Moreover, several other properties and estimates of $K_{R}(X)$ were established in $[3-6,9,10,14,15]$. Note also that optimal selections have applications in investigating the minimal displacement problem, retraction problem onto spheres [11, 12]. and Fan's approximation principle for nonexpansive mapping [7, 14]. For example, it has been proved in [14] that there exists an optimal selection T of the metric projection onto the unit ball B of the Banach space L^{*} with the Lipschitz constant equal to 1 , which enabled us to extend Fan's L^{α}-approximation principle [7] as follows: For every nonexpansive mapping $F: B \rightarrow L^{x}$, there exists $x \in B$ such that

$$
\|F x-x\|=\inf _{y \in B}\|F x-y\| .
$$

In particular, Thele's result implies that $K_{R}(C(Q))=2$, where $C(Q)$ is the Banach space of all continuous real valued functions on a compact Hausdorff space Q equipped with the uniform norm

$$
\|x\|=\|x\|_{x}=\sup _{x \in Q}|x(s)| .
$$

On the other hand, Goebel and Komorowski [12] observed that the mapping $T: C(Q) \rightarrow B_{z}$ defined by

$$
\begin{equation*}
(T x)(s)=\max \{-1, \min \{1, x(s)\}\} ; \quad x \in C(S), \quad s \in Q . \tag{1.3}
\end{equation*}
$$

is an optimal selection of the metric projection \mathfrak{p} onto the unit ball

$$
B_{\infty}=\left\{x \in C(Q):\|x\|_{\infty} \leqslant 1\right\},
$$

which has the best Lipschitz constant $K_{T}(C(Q))$ equal to 1 . This optimal selection was applied in $[11,12]$ to construct retractions of $C(Q)$ onto the unit sphere with better Lipschitz constants than the constants which could be obtained by using the radial selections. In view of inequality (2.6) with $p=2$, the selection T of \mathscr{P} is called the orthogonal projection (selection).

In Section 2, we prove that the orthogonal projection T is also an optimal selection of the metric projection $\mathscr{P}: C_{p}(Q) \rightarrow 2^{B_{:}}\left(C=B_{\infty}\right.$ in (1.1)) which has the best Lipschitz constant $K_{T}\left(C_{p}(Q)\right)$ equal to 1 , whenever $1 \leqslant p<\infty$ and $C_{p}(Q)$ is the vector space $C(Q)$ with the L^{p}-norm

$$
\begin{equation*}
\|x\|_{p}=\left(\int_{Q}|x|^{p} d \mu\right)^{1 / p} \tag{1.4}
\end{equation*}
$$

where μ denotes a positive Borel measure on Q. Moreover, we show that the optimal selection T of the metric projection $\mathscr{P}: C(Q) \rightarrow 2^{B_{X}}$ is unique in the class of all sunny selections P of \mathscr{P}.

In Section 3, we use orthogonal projections to determine the optimal selections and compute the optimal Lipschitz constants for the unit ball B_{1} of the real Banach space $L^{1}(\Omega, \mu)$ of all μ-integrable functions (equivalence classes) on Ω, where (Ω, μ) is a positive measure space. In this case, by Thele's result we have again $K_{R}\left(L^{1}(\Omega, \mu)\right)=2$. However, the optimal L^{1}-case is completely different from the optimal $C(Q)$-case. For example, we prove that $K_{y p}\left(L^{1}(\Omega, \mu)\right)<2$ if and only if $L^{1}(\Omega, \mu)$ is a finite dimensional space.

2. Optimal Selections in $C_{p}(Q)$

Throughout this section, we assume that T is the orthogonal selection of the metric projection $\mathscr{P}: C(Q) \rightarrow B_{\infty}$. By (1.3) we have

$$
T x(s)= \begin{cases}\operatorname{sgn} x(s), & \text { if } \quad s \in M(x) \tag{2.1}\\ x(s), & \text { otherwise }\end{cases}
$$

where $\operatorname{sgn} a=a /|a|$ if $a \neq 0, \operatorname{sgn} 0=0$, and

$$
\begin{equation*}
M(x)=\{s \in Q:|x(s)|>1\} . \tag{2.2}
\end{equation*}
$$

Hence we get

$$
\begin{equation*}
Q \backslash M(x)=Z(x-T x):=\{s \in Q: x(s)=T x(s)\} \tag{2.3}
\end{equation*}
$$

Recall that a selection P of the metric projection $\mathscr{P}: C(Q) \rightarrow 2^{B_{x}}$ is said to be sunny [13] if

$$
\begin{equation*}
P x_{\alpha}=P x \tag{2.4}
\end{equation*}
$$

for all $x \in C(Q)$ and $\alpha \geqslant 0$, where

$$
\begin{equation*}
x_{\alpha}=\alpha x+(1-\alpha) P x \tag{2.5}
\end{equation*}
$$

Theorem 2.1. The orthogonal projection T is an optimal selection of the metric projection $\mathscr{P}: C_{p}(Q) \rightarrow 2^{B_{x}}$ for $1 \leqslant p \leqslant \infty$. Moreover, T is sunny and

$$
K_{T}\left(C_{p}(Q)\right)=K_{\mathscr{\prime}}\left(C_{p}(Q)\right)=1
$$

Proof. The inequality

$$
|a-\operatorname{sgn} a| \leqslant|a-b|
$$

holds for all real a and b such that $|a| \geqslant 1$ and $|b| \leqslant 1$. Hence one can insert $a=x(s)$ and $b=y(s)$, and use (2.1)-(2.3) to get

$$
|x(s)-T x(s)| \leqslant|x(s)-y(s)|
$$

for all $s \in Q, \quad x \in C(Q)$, and $y \in B_{\infty}$. This in conjunction with the monotonicity of the norm (1.4) yields

$$
\begin{equation*}
\|x-T x\|_{p} \leqslant\|x-y\|_{p} \tag{2.6}
\end{equation*}
$$

for all $y \in B_{x}$, i.e., T is a selection of the metric projection $\mathscr{P}: C_{p}(Q) \rightarrow 2^{B_{x}}$. Similarly, one can apply (2.1)-(2.3) together with the inequalities

$$
|\operatorname{sgn} a-\operatorname{sgn} b| \leqslant|a-b| ; \quad|a|,|b| \geqslant 1
$$

and

$$
|a-\operatorname{sgn} b| \leqslant|a-b| ; \quad|a| \leqslant 1,|b| \geqslant 1
$$

to obtain

$$
\|T x-T y\|_{p} \leqslant\|x-y\|_{p}
$$

for all $x, y \in C(Q)$. Since $T x=x$ on B_{∞}, it follows that T is optimal and $K_{T}\left(C_{p}(Q)\right)=1$. Since T is identical with the single valued metric projection of the inner-product space $C_{2}(Q)$ onto the convex subset B_{∞}, it follows that T is sunny [13, 17]. This completes the proof.

In the following, the symbol $\|\cdot\|$ denotes the uniform norm $\|\cdot\|_{x}$. Since $R x$ belongs to $\mathscr{P}(x)$, it follows from (1.2) that

$$
\begin{equation*}
\|x-P x\|=\|x-R x\|=\|x\|-1 \tag{2.7}
\end{equation*}
$$

for all $x \in C(Q) \backslash B_{\infty}$ and $P x \in \mathscr{P}(x)$. Now, we can establish the main result of this section.

Theorem 2.2. A sunny optimal selection P of the metric projection $P: C(Q) \rightarrow 2^{B \times}$ is unique, i.e., $P=T$.

For the proof, note that the sunny optimal selection P satisfies (2.4) and the following characteristic inequalities:

$$
\|x-P x\| \leqslant\|x-y\|, \quad y \in B_{x},
$$

and

$$
\begin{equation*}
\|P x-P y\| \leqslant\|x-y\| ; \quad x, y \in C(Q) \tag{2.8}
\end{equation*}
$$

Moreover, denote

$$
E(x)=\{s \in Q:|x(s)|=\|x\|\}
$$

Since Q is compact, the set $E(x)$ is nonempty for every $x \in C(Q)$. Additionally, we have

$$
\begin{equation*}
P x(s)=\operatorname{sgn} x(s) \tag{2.9}
\end{equation*}
$$

whenever $s \in E(x)$ and $\|x\|>1$. Indeed, by (2.7) and the fact that $|P x(s)| \leqslant 1$ we obtain

$$
\|x\|-1=\|x-P x\| \geqslant|x(s)-P x(s)|=|x(s)|-P x(s) \operatorname{sgn} x(s) .
$$

Hence $P x(s) \operatorname{sgn} x(s) \geqslant 1$, which gives (2.9). In the following three lemmas, it is assumed that P is a sunny optimal selection of $\mathscr{P}: C(Q) \rightarrow 2^{B}$.

Lemma 2.1. If $\|x\|>1$ then $E(x)=E(x-P x)$.
Proof. If $s \in E(x)$ then by (2.7) we have

$$
\|x\|-1=\|x-P x\| \geqslant|x(s)-P x(s)| \geqslant\|x\|-1
$$

Hence we get $E(x) \subseteq E(x-P x)$. For an indirect proof of inclusion $E(x) \supseteq$ $E(x-P x)$, we assume that $s \in E(x-P x) \backslash E(x)$ and $|x(s)|>1$. Then one can use (2.7) and the fact that $|P x(s)| \leqslant 1$ to get

$$
\begin{equation*}
|x(s)|-P x(s) \operatorname{sgn} x(s)=|x(s)-P x(s)|=\|x\|-1 \tag{2.10}
\end{equation*}
$$

Next, we define $y \in C(Q)$ by

$$
y(u)= \begin{cases}\frac{\|x\|+|x(s)|}{2} \operatorname{sgn} x(u), & \text { if }|x(u)| \geqslant|x(s)| \\ x(u)+\frac{\|x\|-|x(s)|}{2} \frac{x(u)}{|x(s)|}, & \text { otherwise. }\end{cases}
$$

If $|x(u)| \geqslant|x(s)|$ then we have

$$
|y(u)|=(\|x\|+|x(s)|) / 2
$$

and

$$
|x(u)-y(u)|=||x(u)|-(\|x\|+|x(s)|) / 2| \leqslant(\|x\|-|x(s)|) / 2
$$

Otherwise, we have

$$
|y(u)| \leqslant|x(u)|+(\|x\|-|x(s)|) / 2 \leqslant(\|x\|+|x(s)|) / 2
$$

and

$$
|x(u)-y(u)| \leqslant(\|x\|-|x(s)|) / 2
$$

where the last inequality can be replaced by the equality for $u=s$. Hence we obtain

$$
\begin{equation*}
\|y\|=|y(s)|=(\|x\|+|x(s)|) / 2>1 \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x-y\|=(\|x\|-|x(s)|) / 2 \tag{2.12}
\end{equation*}
$$

Therefore, by (2.9) we get

$$
P y(s)=\operatorname{sgn} y(s)=\operatorname{sgn} x(s) .
$$

This together with (2.10) yields

$$
\|P x-P y\| \geqslant|[P x(s)-P y(s)] \operatorname{sgn} x(s)|=\|x\|-|x(s)| .
$$

Since $s \notin E(x)$, it follows from (2.12) that

$$
\|P x-P y\|>\|x-y\|
$$

which contradicts (2.8). Thus we have

$$
\begin{equation*}
|x(s)|=\|x\| \tag{2.13}
\end{equation*}
$$

whenever $x \in C(Q)$ is such that $s \in E(x-P x)$ and $|x(s)|>1$. Finally, if $|x(s)| \leqslant 1$ and $s \in E(x-P x)$, then (2.7) gives

$$
|x(s)-P x(s)|=\|x\|-1>0 .
$$

Hence $\left|x_{\alpha}(s)\right| \rightarrow \infty$ as $\alpha \rightarrow \infty$. Choose $\alpha>0$ so large that $\left|x_{\alpha}(s)\right|>1$. Then (2.4) and (2.5) yield

$$
\begin{equation*}
\left|x_{\alpha}(s)-P x_{\alpha}(s)\right|=\alpha|x(s)-P x(s)|=\alpha\|x-P x\|=\left\|x_{\alpha}-P x_{\alpha}\right\| . \tag{2.14}
\end{equation*}
$$

Thus $s \in E\left(x_{\alpha}-P x_{\alpha}\right)$, and we can apply (2.13) to get $\left|x_{\alpha}(s)\right|=\left\|x_{\alpha}\right\|$. Hence one can use (2.4) and (2.9) to derive

$$
P x(s)=P x_{\alpha}(s)=\operatorname{sgn} x_{\alpha}(s)=\operatorname{sgn}\left[x_{x}(s)-P x_{x}(s)\right]=\operatorname{sgn}[x(s)-P x(s)]
$$

and

$$
0<|x(s)-P x(s)|=[x(s)-P x(s)] P x(s)=x(s) P x(s)-1 \leqslant 0
$$

This contradiction completes the proof.
Lemma 2.2. If $\|x\|>1$ and $\alpha \geqslant 0$, then we have

$$
\left\|x_{\alpha}\right\|=\alpha\|x\|+1-\alpha
$$

Proof. Take an element $s \in E(x)$, and use (2.9) to get

$$
\left\|x_{\alpha}\right\| \geqslant\left|x_{\alpha}(s)\right|=|\alpha x(s)+(1-\alpha) \operatorname{sgn} x(s)|=\alpha\|x\|+1-\alpha>1
$$

Hence, as in (2.14), we conclude that $s \in E\left(x_{\alpha}-P x_{\alpha}\right)$. Thus Lemma 2.1 gives $\left\|x_{\alpha}\right\|=\left|x_{\alpha}(s)\right|$, which completes the proof.

Lemma 2.3. We have $\operatorname{sgn}[P x(s)] \operatorname{sgn} x(s) \geqslant 0$.
Proof. Without loss of generality, we assume that $\|x\|>1$. If the desired inequality does not hold, then we have

$$
\begin{equation*}
\operatorname{sgn}[P x(s)] \operatorname{sgn} x(s)=-1 \tag{2.15}
\end{equation*}
$$

and

$$
\begin{equation*}
-1 \leqslant-|P x(s)|=P x(s) \operatorname{sgn} x(s)<0 \tag{2.16}
\end{equation*}
$$

By Lemma 2.2 and (2.5) it follows that

$$
0 \leqslant\left\|x_{x}\right\|+x_{\alpha}(s) \operatorname{sgn} x(s) \rightarrow 1-|P x(s)|
$$

as $\alpha \rightarrow 0$. Therefore, one can find a positive $\alpha<1$ which is so small that

$$
0 \leqslant\left(\left\|x_{\alpha}\right\|+x_{\alpha}(s) \operatorname{sgn} x(s)\right) / 2<1
$$

and

$$
\operatorname{sgn} x_{\alpha}(s)=\operatorname{sgn} P x(s) .
$$

In particular, the last identity in conjunction with (2.15)-(2.16) yields

$$
\begin{equation*}
P x(s) \operatorname{sgn} x(s)=-|P x(s)|<-\left|x_{\alpha}(s)\right|=x_{\alpha}(s) \operatorname{sgn} x(s) . \tag{2.17}
\end{equation*}
$$

Next, define y in $C(Q)$ by

$$
y(u)= \begin{cases}\frac{\left\|x_{\alpha}\right\| \operatorname{sgn} x(s)+x_{\alpha}(s)}{2}, & \text { if } u \in A \\ x_{\alpha}(u)+\frac{\left\|x_{\alpha}\right\| \operatorname{sgn} x(s)-x_{\alpha}(s)}{2}, & \text { otherwise }\end{cases}
$$

where

$$
A=\left\{u \in Q: x_{\alpha}(u) \operatorname{sgn} x(s) \geqslant x_{\alpha}(s) \operatorname{sgn} x(s)\right\} .
$$

If $u \in A$ then we have

$$
|y(u)|=\left(\left\|x_{\alpha}\right\|+x_{\alpha}(s) \operatorname{sgn} x(s)\right) / 2
$$

and

$$
\begin{aligned}
-\frac{\left\|x_{\alpha}\right\|-x_{\alpha}(s) \operatorname{sgn} x(s)}{2} & \leqslant x_{\alpha}(u) \operatorname{sgn} x(s)-\frac{\left\|x_{\alpha}\right\|+x_{\alpha}(s) \operatorname{sgn} x(s)}{2} \\
& \leqslant \frac{\left\|x_{\alpha}\right\|-x_{\alpha}(s) \operatorname{sgn} x(s)}{2} .
\end{aligned}
$$

Otherwise, we get

$$
\begin{aligned}
-\frac{\left\|x_{x}\right\|+x_{x}(s) \operatorname{sgn} x(s)}{2} & \leqslant x_{\alpha}(u) \operatorname{sgn} x(s)+\frac{\left\|x_{x}\right\|-x_{\alpha}(s) \operatorname{sgn} x(s)}{2} \\
& \leqslant \frac{\left\|x_{x}\right\|+x_{\alpha}(s) \operatorname{sgn} x(s)}{2}
\end{aligned}
$$

and

$$
\left|x_{x}(u)-y(u)\right|=\left(\left\|x_{x}\right\|-x_{x}(s) \operatorname{sgn} x(s)\right) / 2 .
$$

By the first and third inequalities we obtain

$$
\|y\|=\left(\left\|x_{x}\right\|+x_{x}(s) \operatorname{sgn} x(s)\right) / 2<1 .
$$

640/82/3-9

Similarly, the second and fourth inequalities yield

$$
\left\|x_{\alpha}-y\right\|=\left(\left\|x_{\alpha}\right\|-x_{\alpha}(s) \operatorname{sgn} x(s)\right) / 2 .
$$

Hence it follows from the strict inequality (2.17) that

$$
\begin{aligned}
\left\|P y-P x_{\alpha}\right\| & \geqslant[y(s)-P x(s)] \operatorname{sgn} x(s) \\
& =\frac{\left\|x_{\alpha}\right\|+x_{\alpha}(s) \operatorname{sgn} x(s)}{2}-P x(s) \operatorname{sgn} x(s) \\
& >\frac{\left\|x_{\alpha}\right\|-x_{\alpha}(s) \operatorname{sgn} x(s)}{2}=\left\|y-x_{\alpha}\right\|,
\end{aligned}
$$

which contradicts (2.8).
Proof of Theorem 2.2. In view of (2.1), we have to show that

$$
P x(s)=\operatorname{sgn} x(s), \quad \text { if } \quad|x(s)| \geqslant 1,
$$

and

$$
P x(s)=x(s), \quad \text { if } \quad|x(s)|<1
$$

First, assume that

$$
P x(s) \neq \operatorname{sgn} x(s) \quad \text { and } \quad|x(s)| \geqslant 1 .
$$

Then by Lemma 2.3 we derive

$$
0 \leqslant P x(s) \operatorname{sgn} x(s)<1 \quad \text { and } \quad|P x(s)|<1
$$

Since we have

$$
\begin{aligned}
x_{x}(s) \operatorname{sgn} x(s) & =\alpha(x(s)-P x(s)) \operatorname{sgn} x(s)+P x(s) \operatorname{sgn} x(s) \\
& =\alpha|x(s)-P x(s)|+P x(s) \operatorname{sgn} x(s) \\
& >P x(s) \operatorname{sgn} x(s) \geqslant 0,
\end{aligned}
$$

it follows that

$$
\begin{equation*}
\operatorname{sgn} x(s)=\operatorname{sgn} x_{\alpha}(s) \quad \text { and } \quad|P x(s)|<\left|x_{\alpha}(s)\right| \tag{2.18}
\end{equation*}
$$

whenever $\alpha>0$. Moreover, by Lemma 2.2 and (2.5) we obtain $\left\|x_{x}\right\| \rightarrow 1$, and $x_{\alpha}(s) \rightarrow P x(s)$, as $\alpha \rightarrow 0^{+}$. Hence there exists $\alpha>0$ for which

$$
\begin{equation*}
\left(\left\|x_{\alpha}\right\|+x_{\alpha}(s) \operatorname{sgn} x(s)\right) / 2<1 . \tag{2.19}
\end{equation*}
$$

Now define $y_{x} \in C(Q)$ by

$$
y_{\alpha}(u)= \begin{cases}\frac{\left\|x_{\alpha}\right\|+\left|x_{\alpha}(s)\right|}{2} \operatorname{sgn} x_{\alpha}(u), & \text { if }\left|x_{\alpha}(u)\right| \geqslant\left|x_{\alpha}(s)\right|, \\ x_{\alpha}(u)+\frac{\left\|x_{\alpha}\right\|-\left|x_{\alpha}(s)\right|}{2} \frac{x_{\alpha}(u)}{\left|x_{\alpha}(s)\right|}, & \text { otherwise. }\end{cases}
$$

Since y_{x} is defined exactly as the function y in the proof of Lemma 2.1, it follows from (2.11) and (2.12) that

$$
\left\|y_{x}\right\|=\left(\left\|x_{\alpha}\right\|+\left|x_{x}(s)\right|\right) / 2
$$

and

$$
\left\|x_{\alpha}-y_{\alpha}\right\|=\left(\left\|x_{\alpha}\right\|-\left|x_{\alpha}(s)\right|\right) / 2
$$

This in conjunction with (2.18) and $\left\|y_{\alpha}\right\|<1$ (see (2.19)) yields

$$
\begin{aligned}
\left\|P x_{\alpha}-P y_{x}\right\| & \geqslant\left[y_{\alpha}(s)-P x_{\alpha}(s)\right] \operatorname{sgn} x_{\alpha}(s) \\
& =\frac{\left\|x_{\alpha}\right\|+\left|x_{\alpha}(s)\right|}{2}-|P x(s)| \\
& >\frac{\left\|x_{\alpha}\right\|+\left|x_{\alpha}(s)\right|}{2}-\left|x_{\alpha}(s)\right|=\left\|x_{\alpha}-y_{\alpha}\right\|,
\end{aligned}
$$

which contradicts (2.8). Therefore, we have

$$
\begin{equation*}
P x(s)=\operatorname{sgn} x(s), \tag{2.20}
\end{equation*}
$$

whenever $|x(s)| \geqslant 1$. Finally, suppose that

$$
P x(s) \neq x(s) \quad \text { and } \quad|x(s)|<1 .
$$

Then we have

$$
\left|x_{x}(s)\right|>1 \quad \text { and } \quad \operatorname{sgn} x_{x}(s)=\operatorname{sgn}(x(s)-P x(s))
$$

for sufficiently large $\alpha>0$. Hence, by (2.4) and (2.20), we derive

$$
|P x(s)|=\left|P x_{\boldsymbol{x}}(s)\right|=\left|\operatorname{sgn} x_{\alpha}(s)\right|=1 .
$$

Next, we apply Lemma 2.3 to get

$$
\begin{aligned}
0 \leqslant \operatorname{sgn}\left(x_{\alpha}(s)\right) \operatorname{sgn}\left(P x_{x}(s)\right) & =\operatorname{sgn}(x(s)-P x(s)) \operatorname{sgn} P x(s) \\
& =-\operatorname{sgn}(P x(s)) \operatorname{sgn} P x(s)=-1,
\end{aligned}
$$

which leads to a contradiction and finishes the proof.

3. Optimal Selections in $L^{1}(\Omega, \mu)$

First, we are going to construct the orthogonal selection onto the closed unit ball B_{1} in the Banach space $L^{1}(\Omega, \mu)$ of all real valued μ-integrable functions (equivalence classes) defined on a positive measure space (Ω, μ) and equipped with the norm

$$
\|x\|=\int_{s}|x| d \mu
$$

For this purpose, we need the following elementary properties of the nondecreasing function

$$
f(t)=\int_{\Omega} \min \{|x|, t\} d \mu, \quad t \geqslant 0
$$

where $x \in L^{1}(\Omega, \mu)$.
Lemma 3.1. The function f is a nondecreasing concave continuous function such that $f(0)=0$ and $f(t) \rightarrow\|x\|$, as $t \rightarrow \infty$.

Proof. If $|x(s)| \geqslant \lambda t_{1}+(1-\lambda) t_{2}$ and $0 \leqslant \lambda \leqslant 1$, then we have

$$
\begin{aligned}
\min & \left\{|x(s)|, \lambda t_{1}+(1-\lambda) t_{2}\right\} \\
& =\lambda t_{1}+(1-\lambda) t_{2} \\
& \geqslant \lambda \min \left\{|x(s)|, t_{1}\right\}+(1-\lambda) \min \left\{|x(s)|, t_{2}\right\}
\end{aligned}
$$

Otherwise, we have

$$
\begin{aligned}
\min & \left\{|x(s)|, \lambda t_{1}+(1-\lambda) t_{2}\right\} \\
& =\lambda|x(s)|+(1-\lambda)|x(s)| \\
& \geqslant \lambda \min \left\{|x(s)|, t_{1}\right\}+(1-\lambda) \min \left\{|x(s)|, t_{2}\right\}
\end{aligned}
$$

By integrating these inequalities, we conclude that f is concave, and hence continuous on $(0, \infty)$. The functions

$$
g_{r}(s)=\min \{|x(s)|, t\}, \quad s \in \Omega,
$$

belong to $L^{1}(\Omega, \mu)$ and $g_{t}(s) \downarrow 0$ pointwise, as $t \downarrow 0$. Hence the Monotone Convergence Theorem [1] implies that

$$
f(t)=\int_{\Omega} g_{1} d \mu \rightarrow f(0)=0, \quad \text { as } \quad t \downarrow 0
$$

i.e., f is also continuous at $t=0$. Finally, to compute the limit of f at infinity, note that $f(t)=\|x\|$, whenever x is bounded almost everywhere on Ω and $t \geqslant|x|$ almost everywhere on Ω. Otherwise, it follows that

$$
0 \leqslant|x(s)|-g_{t}(s) \downarrow 0 \quad \text { almost everywhere, as } \quad t \uparrow \infty
$$

Hence one can apply the Monotone Convergence Theorem to get $f(t) \rightarrow$ $\|x\|$ as $t \rightarrow \infty$, which completes the proof.

By Lemma 3.1 the equation

$$
\begin{equation*}
\int_{\Omega} \min \{|x|, t\} d \mu=\|x\|-1 \tag{3.1}
\end{equation*}
$$

has the unique solution $t=t(x)>0$ for each $x \in L^{1}(\Omega, \mu)$ with $\|x\|>1$. Note that this equation can be rewritten in the following equivalent form

$$
\begin{equation*}
\int_{A_{t}(x)}|x-t \operatorname{sgn} x| d \mu=1 \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{t}(x)=\{s \in \Omega:|x(s)| \geqslant t\} . \tag{3.3}
\end{equation*}
$$

Now, let $t=t(x)>0$ be the solution of equation (3.1), where $x \in L^{1}(\Omega, \mu)$ and $\|x\|>1$. Then we define the mapping T by

$$
T x(s)= \begin{cases}x(s)-\operatorname{tsgn} x(s), & \text { if } s \in A_{l}(x) \tag{3.4}\\ 0, & \text { otherwise }\end{cases}
$$

Moreover, we put

$$
\begin{equation*}
T x=x \tag{3.5}
\end{equation*}
$$

whenever $\|x\| \leqslant 1$.
By (3.2) and (3.4) it follows that $\|T x\|=1$, i.e., T is a projection onto the closed unit ball B_{1}. If $x \in L^{1}(\Omega, \mu) \cap L^{2}(\Omega, \mu)$ and $\|x\|>1$, then (3.2)-(3.4) yield

$$
\begin{aligned}
\int_{\Omega}(x & -T x)(T x-y) d \mu \\
& =-\int_{\Omega \backslash A_{1}(x)} x y d \mu+\int_{A_{\mathrm{t}}(x)} t \operatorname{sgn}(x)(x-\operatorname{tsgn} x-y) d \mu
\end{aligned}
$$

$$
\begin{aligned}
= & -\int_{\Omega \backslash A_{t}(x)} x y d \mu+t \int_{A_{t}(x)}|x-t \operatorname{sgn} x| d \mu \\
& -t \int_{A_{t}(x)} y \operatorname{sgn} x d \mu \\
\geqslant & t-t\left(\int_{\Omega \backslash A_{t}(x)}|y| d \mu+\int_{A_{t}(x)}|y| d \mu\right)=t(1-\|y\|) \geqslant 0
\end{aligned}
$$

whenever $y \in B_{1} \cap L^{2}(\Omega, \mu)$. By the well-known characterization of best approximations in an inner-product space by elements of convex sets, it follows that $T x$ is a best approximation to x by elements of the unit ball $B_{1} \cap L^{2}(\Omega, \mu)$ in the inner-product space $L^{1}(\Omega, \mu) \cap L^{2}(\Omega, \mu)$ with L^{2}-norm. Therefore, the projection $T: L^{1}(\Omega, \mu) \rightarrow B_{1}$ is called the orthogonal projection. Clearly, its restriction

$$
\begin{equation*}
T: L^{1}(\Omega, \mu) \cap L^{2}(\Omega, \mu) \rightarrow B_{1} \cap L^{2}(\Omega, \mu) \tag{3.6}
\end{equation*}
$$

is sunny.
TheOrem 3.1. The orthogonal projection T is a selection of the metric projection $\mathscr{P}: L^{1}(\Omega, \mu) \rightarrow 2^{B_{1}}$.

Proof. By (3.2)-(3.4) we have

$$
\begin{aligned}
\|x-T x\| & =\int_{S \backslash A_{t}(x)}|x| d \mu+\int_{A_{t}(x)} t d \mu \\
& =\int_{\Omega}|x| d \mu-\int_{A_{t}(x)}|x-t \operatorname{sgn} x| d \mu \\
& =\|x\|-1 \leqslant\|x-y\|
\end{aligned}
$$

whenever $\|x\|>1$ and $y \in B_{1}$. This completes the proof.
An explicit formula for the orthogonal selection can be given in the special case of the Banach space $l_{n}^{1}(n \geqslant 2)$ which consists of all real n-tuples $x=\left(x_{1}, \ldots, x_{n}\right)$ equipped with the norm

$$
\|x\|=\sum_{k=1}^{n}\left|x_{k}\right|
$$

For a given $x \in l_{n}^{1}$ with $\|x\|>1$, let $m(x)=\left(m_{1}, \ldots, m_{n}\right)$ be a rearrangement of

$$
\Omega=\{1, \ldots, n\}
$$

such that

$$
\begin{equation*}
\left|x_{m_{1}}\right| \geqslant\left|x_{m_{2}}\right| \geqslant \cdots \geqslant\left|x_{m_{n}}\right| \tag{3.7}
\end{equation*}
$$

Moreover, let $r=r(x)$ be the largest integer for which

$$
\begin{equation*}
r\left|x_{m_{r}}\right| \geqslant \sum_{i \in A}\left|x_{i}\right|-1 \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
A=A(x)=\left\{m_{1}, \ldots, m_{r}\right\} \tag{3.9}
\end{equation*}
$$

Then by (3.7) we have

$$
\begin{equation*}
r\left|x_{k}\right| \geqslant \sum_{i \in A}\left|x_{i}\right|-1, \quad k \in A \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
r\left|x_{k}\right|<\sum_{i \in A}\left|x_{i}\right|-1, \quad k \in \Omega \backslash A \tag{3.11}
\end{equation*}
$$

Indeed, if (3.11) is not satisfied, then we obtain

$$
(r+1)\left|x_{m_{r+1}}\right| \geqslant \sum_{i \in A}\left|x_{i}\right|-1+\left|x_{m_{r+1}}\right|
$$

which contradicts the definition of r. In the following, we denote

$$
T x=\left(T x_{1}, \ldots, T x_{n}\right)
$$

for $x \in l_{n}^{1}$.
Corollary 3.1. The orthogonal selection T of the metric projection $\mathfrak{P}: l_{n}^{1} \rightarrow 2^{B_{1}}$ is given on $l_{n}^{1} \backslash B_{1}$ by the formula

$$
T x_{k}= \begin{cases}x_{k}-\frac{\sum_{i \in A}\left|x_{i}\right|-1}{r} \operatorname{sgn} x_{k}, & \text { if } k \in A \\ 0, & \text { if } k \in \Omega \backslash A\end{cases}
$$

where $r=r(x)$ and $A=A(x)$ are defined by (3.7)-(3.9).
Proof. Let μ be the counting measure on $\Omega=\{1,2, \ldots, n\}$, and let

$$
t=\left(\sum_{i \in A}\left|x_{i}\right|-1\right) / r
$$

Then t satisfies equation (3.2). Indeed, by (3.10) and (3.11), we have $t>0$ and

$$
\sum_{k \in A}\left|x_{k}-t \operatorname{sgn} x_{k}\right|=\sum_{k \in A}\left(\left|x_{k}\right|-t\right)=1
$$

which completes the proof.
As in the case of $C(Q)$ space, the orthogonal selection $T: l_{n}^{1} \rightarrow B_{1}$ is optimal.

Theorem 3.2. The orthogonal projection T is an optimal selection of the metric projection $\mathscr{P}: l_{n}^{1} \rightarrow 2^{B_{1}}$. Moreover, T is sunny and

$$
K_{T}\left(l_{n}^{1}\right)=K_{M}\left(l_{n}^{1}\right)=\frac{2(n-1)}{n}
$$

For the proof we need the following two lemmas.
Lemma 3.2. If $\quad x=(1 /(n-1), \ldots, 1 /(n-1)) \quad$ and $\quad y=(1 /(n-1), \ldots$, $1 /(n-1), 0)$ are elements of l_{n}^{1}, then we have

$$
\|T x-T y\|=\frac{2(n-1)}{n}\|x-y\|
$$

Proof. Since $\|y\|=1$, we have $T y=y$. Moreover, we have $r(x)=n$ and $A(x)=\Omega$ in (3.8) and (3.9). Hence, by Corollary 3.1, we get

$$
T x_{k}=\frac{1}{n}, \quad k=1, \ldots, n
$$

Therefore, we have

$$
\|T x-T y\|=\frac{2}{n} \quad \text { and } \quad\|x-y\|=\frac{1}{n-1}
$$

which completes the proof.
Lemma 3.3. The inequality

$$
\|T x-T y\| \leqslant \frac{2(n-1)}{n}\|x-y\|
$$

holds for all $x, y \in l_{n}^{1}$.

Proof. Let x and $y(\|x\|>1)$ be arbitrary elements in l_{n}^{1}. Without loss of generality, we assume that coordinates of x (and y) are arranged and their signs are changed in such (the same) way that

$$
\begin{equation*}
x_{1} \geqslant x_{2} \geqslant \cdots \geqslant x_{n} \geqslant 0 \tag{3.12}
\end{equation*}
$$

Note that

$$
A=A(x)=\{1, \ldots, r\}
$$

for some $r(1 \leqslant r \leqslant n)$, and that

$$
\begin{equation*}
T x_{k} \geqslant 0, \quad k \in A \tag{3.13}
\end{equation*}
$$

which follows immediately from (3.10) and Corollary 3.1. Moreover, we have

$$
\begin{equation*}
\sum_{k=r+1}^{n}\left|x_{k}\right| \leqslant \frac{n-r}{n} d \tag{3.14}
\end{equation*}
$$

where $d=\|x\|-1$ and the left hand side is equal to 0 for $r=n$. Indeed, by taking the sum of inequalities (3.11), we derive

$$
r \sum_{k=r+1}^{n}\left|x_{k}\right|<(n-r)\left(\sum_{i=1}^{r}\left|x_{i}\right|-1\right)
$$

Hence we get

$$
n \sum_{k=r+1}^{n}\left|x_{k}\right|<(n-r)\left(\sum_{i=1}^{n}\left|x_{i}\right|-1\right)
$$

which finishes the proof of (3.14). We denote by $\alpha=$ card B the number of elements of the set

$$
B=\left\{k \in A: T x_{k} \geqslant y_{k}\right\}
$$

Note that $\alpha \geqslant 1$, whenever $\|y\| \leqslant 1$. Indeed, if $B=\phi$ then, by (3.13) we get $y_{k}>T x_{k} \geqslant 0(k=1, \ldots, r)$ and $l \geqslant\|y\|>\|T x\|=1$, a contradiction. Now, denote

$$
t=\left(\sum_{i=1}^{r} x_{i}-1\right) / r
$$

and suppose first that $\|y\| \leqslant 1$. Then apply Corollary 3.1 together with (3.5) and (3.12)-(3.14) to get

$$
\begin{aligned}
\|T x-T y\|= & \|T x-y\| \\
= & \sum_{k \in B}\left(x_{k}-t-y_{k}\right)+\sum_{k \in A \backslash B}\left(y_{k}-x_{k}+t\right)+\sum_{k=r+1}^{n}\left|y_{k}\right| \\
= & {\left[\sum_{k \in B}\left(x_{k}-y_{k}\right)+\sum_{k \in A \backslash B}\left(y_{k}-x_{k}\right)+\sum_{k=r+1}^{n}\left(\left|y_{k}\right|-x_{k}\right)\right] } \\
& +\sum_{k=r+1}^{n} x_{k}-\frac{\alpha}{r}\left(d-\sum_{k=r+1}^{n} x_{k}\right)+\frac{r-\alpha}{r}\left(d-\sum_{k=r+1}^{n} x_{k}\right) \\
\leqslant & \|x-y\|+\left(1-\frac{2 \alpha}{r}\right) d+\frac{2 \alpha}{r} \sum_{k=r+1}^{n} x_{k} \\
\leqslant & \|x-y\|+\left(1-\frac{2 \alpha}{r}\right) d+\frac{2 \alpha \frac{n-r}{r}}{n} d \\
= & \|x-y\|+\left(1-\frac{2 \alpha}{n}\right)(\|x\|-1) .
\end{aligned}
$$

Hence we derive

$$
\|T x-T y\| \leqslant\|x-y\|
$$

whenever $n \leqslant 2 \alpha$. Otherwise, we have

$$
\begin{aligned}
\|T x-T y\| & \leqslant\|x-y\|+\left(1-\frac{2 x}{n}\right)\|x-y\| \\
& =\frac{2(n-\alpha)}{n}\|x-y\| \leqslant \frac{2(n-1)}{n}\|x-y\|,
\end{aligned}
$$

which completes the proof when $\|y\| \leqslant 1$.
Thus it remains to consider the case when $\|y\|>1$. Without loss of generality, x and y can be interchanged. Therefore, in addition to (3.12), we assume that

$$
\begin{equation*}
\sum_{i \in A} x_{i} \geqslant \sum_{i \in A}\left|y_{i}\right| \tag{3.15}
\end{equation*}
$$

where $A=A_{1} \cup A_{2}, \quad A_{1}=A(x)=\{1, \ldots, r\}$, and the set $A_{2}=A(y)=$ $\left\{m_{1}, \ldots, m_{p}\right\}$ with $p=r(y)$ is defined by formulae (3.7) and (3.8), in which x is replaced by y. Denote

$$
\begin{gathered}
C=A_{1} \cap A_{2}, \quad D=\left\{k \in C: T x_{k} \geqslant T y_{k}\right\}, \\
\alpha=\text { card } D, \quad d_{1}=\sum_{i \in A_{1}} x_{i}-1, \quad \text { and } \quad d_{2}=\sum_{i \in A_{2}}\left|y_{i}\right|-1 .
\end{gathered}
$$

Then we have $C=\left\{m_{1}, \ldots, m_{q}\right\}, 0 \leqslant \alpha \leqslant q \leqslant \min \{p, r\}, A \backslash A_{1}=A_{2} \backslash C$, and $A \backslash A_{2}=A_{1} \backslash C$. Since inequalities (3.11) give

$$
r x_{k}<d_{1} \quad \text { for } k \in A_{2} \backslash C,
$$

we get

$$
r \sum_{k \in A_{2} \backslash C} x_{k} \leqslant(p-q) d_{1}=(p-q)\left(\sum_{k \in A} x_{k}-1-\sum_{k \in A \backslash A_{1}} x_{k}\right) .
$$

Hence we have

$$
\begin{equation*}
n_{o} \sum_{k \in \mathcal{A}_{2} \backslash C} x_{k} \leqslant\left(n_{o}-r\right) c_{1} \tag{3.16}
\end{equation*}
$$

where $n_{0}=r+p-q$ and

$$
\begin{equation*}
c_{1}=\sum_{k \in A} x_{k}-1=d_{1}+\sum_{k \in A \backslash A_{1}} x_{k} . \tag{3.17}
\end{equation*}
$$

Similarly, we use inequalities

$$
p\left|y_{k}\right|<d_{2} \quad \text { for } \quad k \in A_{1} \backslash C,
$$

in order to get

$$
\begin{equation*}
n_{o} \sum_{k \in A_{1} \backslash C}\left|y_{k}\right| \leqslant\left(n_{o}-p\right) c_{2} \tag{3.18}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{2}=\sum_{k \in A}\left|y_{k}\right|-1=d_{2}+\sum_{k \in A \backslash A_{2}}\left|y_{k}\right| . \tag{3.19}
\end{equation*}
$$

Now, by Corollary 3.1 we obtain

$$
\begin{aligned}
\|T x-T y\|= & \sum_{k \in A_{\backslash C} \backslash C}\left(x_{k}-\frac{d_{1}}{r}\right)+\sum_{k \in C}\left|x_{k}-\frac{d_{1}}{r}-y_{k}+\frac{d_{2}}{p} \operatorname{sgn} y_{k}\right| \\
& +\sum_{k \in A_{2} \backslash C}\left(\left|y_{k}\right|-\frac{d_{2}}{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{k \in A_{\backslash \backslash C}}\left(x_{k}-\left|y_{k}\right|\right)+\sum_{k \in A_{1} \backslash C}\left|y_{k}\right|-(r-q) \frac{d_{1}}{r} \\
& +\sum_{k \in D}\left(x_{k}-y_{k}\right)-\alpha \frac{d_{1}}{r}+\sum_{k \in D} \frac{d_{2}}{p} \operatorname{sgn} y_{k} \\
& +\sum_{k \in C \backslash D}\left(y_{k}-x_{k}\right)+\sum_{k \in C \backslash D}\left(\frac{d_{1}}{r}-\frac{d_{2}}{p} \operatorname{sgn} y_{k}\right) \\
& +\sum_{k \in A_{2} \backslash C}\left(\left|y_{k}\right|-x_{k}\right)+\sum_{k \in A_{2} \backslash C} x_{k}-(p-q) \frac{d_{2}}{p}
\end{aligned}
$$

If $k \in C \backslash D$, then it follows from (3.10) that

$$
0 \leqslant T x_{k}<T y_{k}=\left(\left|y_{k}\right|-\frac{d_{2}}{p}\right) \operatorname{sgn} y_{k} \quad \text { and } \quad\left|y_{k}\right|-\frac{d_{2}}{p} \geqslant 0
$$

Hence we have

$$
\operatorname{sgn} y_{k}=1 \quad \text { for } \quad k \in C \backslash D .
$$

This in conjunction with (3.16)-(3.19) yields

$$
\begin{aligned}
\|T x-T y\| \leqslant & \sum_{k \in A}\left|x_{k}-y_{k}\right|+\sum_{k \in A_{1} \backslash C}\left|y_{k}\right|-(r-q) \frac{d_{1}}{r}-\alpha \frac{d_{1}}{r}+\alpha \frac{d_{2}}{p} \\
& +(q-\alpha)\left(\frac{d_{1}}{r}-\frac{d_{2}}{p}\right)+\sum_{k \in A_{2} \backslash C} x_{k}-(p-q) \frac{d_{2}}{p} \\
\leqslant & \|x-y\|+\frac{d_{1}}{r}(2 q-2 \alpha-r)+\sum_{k \in A_{2} \backslash C} x_{k} \\
& +\frac{d_{2}}{p}(2 \alpha-p)+\sum_{k \in A_{1} \backslash C}\left|y_{k}\right| \\
= & \|x-y\|+\frac{c_{1}}{r}(2 q-2 \alpha-r)+\frac{2}{r}(r+\alpha-q) \sum_{k \in A_{2} \backslash C} x_{k} \\
& +\frac{c_{2}}{p}(2 \alpha-p)+\frac{2}{p}(p-\alpha) \sum_{k \in A_{1} \backslash C}\left|y_{k}\right| \\
\leqslant & \|x-y\|+\frac{c_{1}}{r}(2 q-2 \alpha-r)+\frac{2 c_{1}}{r}(r+\alpha-q) \frac{n_{o}-r}{n_{o}} \\
& +\frac{c_{2}}{p}(2 \alpha-p)+\frac{2 c_{2}}{p}(p-\alpha) \frac{n_{o}-p}{n_{o}} \\
= & \|x-y\|+\frac{r+2 \alpha-p-q}{n_{o}}\left(c_{2}-c_{1}\right) .
\end{aligned}
$$

To complete the proof, it remains to show that

$$
\begin{equation*}
\frac{r+2 x-p-q}{n_{0}}\left(c_{2}-c_{1}\right) \leqslant \frac{n-2}{n}\|x-y\| \tag{3.20}
\end{equation*}
$$

Note that $1 \leqslant n_{o}=r+p-q \leqslant n$. Moreover, by (3.15) we have $c_{1} \geqslant c_{2}$. Hence the inequality is true when $r+2 \alpha-p-q \geqslant 0$. Otherwise, by (3.17) and (3.19) we get

$$
\begin{equation*}
c_{1}-c_{2}=\sum_{i \in A}\left(x_{i}-\left|y_{i}\right|\right) \leqslant\|x-y\| . \tag{3.21}
\end{equation*}
$$

Additionally, the inequality

$$
\begin{equation*}
p+q-r-2 \alpha=2(p-\alpha)-n_{o} \leqslant n_{o}-2 \tag{3.22}
\end{equation*}
$$

holds if and only if

$$
p-\alpha+1 \leqslant n_{o}
$$

The last inequality is obvious when $p<n_{o}$. Otherwise, we have $n_{o}=p \geqslant$ $q=r$, and so

$$
C=A_{1}=\{1, \ldots, r\} \quad \text { and } \quad A_{2}=\left\{1, \ldots, r, m_{r+1}, \ldots, m_{p}\right\}
$$

This in conjunction with (3.13) and Corollary 3.1 yields

$$
\sum_{k=1}^{r} T x_{k}=\|T x\|=1=\sum_{k \in A_{2}}\left|T y_{k}\right| \geqslant \sum_{k=1}^{r}\left|T y_{k}\right|
$$

which is possible only when $T x_{k} \geqslant T y_{k}$ for some k with $1 \leqslant k \leqslant r$. This means that $D \neq \phi$, i.e., $x \geqslant 1$. Hence the inequality $p-\alpha+1 \leqslant n_{o}$ is also true in the case when $p=n_{o}$, which completes the proof of (3.22). By (3.21) and (3.22), the proof of the first inequality in (3.20) is completed.

Proof of Theorem 3.2. Let T be the orthogonal selection of the metric projection $\mathscr{P}: l_{n}^{1} \rightarrow 2^{B_{1}}$. Then the sunny property of T follows immediately from (3.6). Moreover, by Lemmas 3.2 and 3.3 we have

$$
K_{T}\left(l_{n}^{1}\right)=\frac{2(n-1)}{n}
$$

Hence it remains to find an element $x \in l_{n}^{1} \backslash B_{1}$ such that, for every $z=P x \in \mathscr{P}(x)$, there exists y which satisfies $\|y\|=1$ and

$$
\begin{equation*}
\|z-y\| \geqslant\|T x-y\|=\frac{2(n-1)}{n}\|x-y\| \tag{3.23}
\end{equation*}
$$

For this purpose, put

$$
x=\left(\frac{1}{n-1}, \ldots, \frac{1}{n-1}\right) \in l_{n}^{1} \quad \text { and } \quad y^{i}=x-\frac{1}{n-1} e_{i}
$$

where e_{i} is the unit vector in l_{n}^{\prime} with its i th coordinate equal to 1 . It is clear that $\left\|y^{i}\right\|=1$. Moreover, by the proof of Lemma 3.2 we have $T x_{k}=1 / n$ for $k=1, \ldots, n$. Hence we easily compute that

$$
\begin{equation*}
\left\|T x-y^{i}\right\|=\frac{2}{n} \quad \text { and } \quad\left\|x-y^{i}\right\|=\frac{1}{n-1} \tag{3.24}
\end{equation*}
$$

which proves the identity in (3.23) for $y=y^{i}(i=1, \ldots, n)$.
To construct the required y, note that the assumption $z \in \mathscr{P}(x)$ implies that $z_{i} \geqslant 0,\|z\|=1$, and $z_{j} \geqslant 1 / n$ for some $j \in \Omega=\{1, \ldots, n\}$. Moreover, we denote

$$
A_{3}=\Omega \backslash A_{1} \backslash A_{2} \backslash\{j\},
$$

where

$$
A_{1}=\left\{i \in \Omega \backslash\{j\}: z_{i} \leqslant \frac{1}{n}\right\} \quad \text { and } \quad A_{2}=\left\{i \in \Omega \backslash A_{1} \backslash\{j\}: \frac{1}{n}<z_{i} \leqslant \frac{1}{n-1}\right\}
$$

If we put $c_{i}=\operatorname{card} A_{i}(i=1,2,3)$, then we get

$$
c_{1}+c_{2}+c_{3}+1=n, \quad z_{j}+\sum_{i \in A_{3}} z_{i}=1-\sum_{i \in A_{1} \cup A_{2}} z_{i}
$$

and

$$
\sum_{i \in A_{1} \cup A_{2}} z_{i}+\frac{c_{3}}{n-1}+\frac{1}{n} \leqslant \sum_{i \in A_{1} \cup A_{2}} z_{i}+\sum_{i \in A_{3}} z_{i}+z_{j}=1
$$

Hence it follows that

$$
\begin{aligned}
\left\|z-y^{j}\right\| & =z_{j}+\sum_{i \neq j}\left|z_{j}-\frac{1}{n-1}\right| \\
& =z_{j}+\sum_{i \in A_{1}}\left(\frac{1}{n-1}-z_{i}\right)+\sum_{i \in A_{2}}\left(\frac{1}{n-1}-z_{i}\right)+\sum_{i \in A_{3}}\left(z_{i}-\frac{1}{n-1}\right) \\
& =z_{j}-\sum_{i \in A_{1} \cup A_{2}} z_{i}+\sum_{i \in A_{3}} z_{i}+\frac{c_{1}+c_{2}-c_{3}}{n-1}
\end{aligned}
$$

$$
\begin{aligned}
& =1-2 \sum_{i \in A_{1} \cup A_{2}} z_{i}+\frac{n-1-2 c_{3}}{n-1} \\
& =\frac{2}{n}+2\left(1-\sum_{i \in A_{1} \cup A_{2}} z_{i}-\frac{c_{3}}{n-1}-\frac{1}{n}\right) \geqslant \frac{2}{n}
\end{aligned}
$$

This together with (3.24) gives the inequality in (3.23) for $y=y^{j}$. Hence the proof is finished.

Now, we show the optimality of the orthogonal selection T of the metric projection $\mathscr{P}: L^{1}(\Omega, \mu) \rightarrow 2^{B_{1}}$ in the case when the Banach space $L^{1}(\Omega, \mu)$ is infinite dimensional. Since $T x \in \mathscr{P}(x)$, we have

$$
\|x-T x\| \leqslant\|x-y\|
$$

for all $y \in B_{1}$. By the triangle inequality and the fact that $T y=y$, it follows that

$$
\begin{equation*}
\|T x-T y\| \leqslant 2\|x-y\| \tag{3.25}
\end{equation*}
$$

whenever $x, y \in L^{1}(\Omega, \mu),\|x\|>1$, and $\|y\| \leqslant 1$.
Theorem 3.3. Let the Banach space $L^{1}(\Omega, \mu)$ be infinite dimensional. Then the orthogonal projection T is an optimal selection of the metric projection $\mathscr{P}: L^{1}(\Omega, \mu) \rightarrow 2^{B_{1}}$. Moreover, T is sunny and

$$
K_{T}\left(L^{1}(\Omega, \mu)\right)=K_{\mathscr{P}}\left(L^{\prime}(\Omega, \mu)\right)=2
$$

For the proof, recall that $t=t(x)>0$ denotes the unique solution of the equation

$$
\begin{equation*}
\int_{\Omega} \min \{|x|, t\} d \mu=\|x\|-1 \tag{3.26}
\end{equation*}
$$

whenever $\|x\|>1$. Moreover, extend $t(x)$ to the unit ball by setting

$$
\begin{equation*}
t(x)=0, \quad x \in B_{1} \tag{3.27}
\end{equation*}
$$

Then the orthogonal selection can be written in the form

$$
T x=(x-t(x) \operatorname{sgn}(x)) \chi_{A(x)}, \quad x \in L^{1}(\Omega, \mu)
$$

where $\chi_{A(x)}$ denotes the characteristic function of the set

$$
A(x)=\{s \in \Omega:|x(s)| \geqslant t(x)\}
$$

The function $x \rightarrow t(x)$ has the following nice properties.

Lemma 3.4. The function $x \rightarrow t(x), x \in L^{1}(\Omega, \mu)$, is a convex continuous function which satisfies

$$
0 \leqslant t(|x|)=t(x) \leqslant t(y)
$$

whenever $|x| \leqslant|y|$.
Proof. Note that the constant $t(x)$ is integrable on $A(x)$, and so $\mu(A(x))<\infty$, whenever $\|x\|>1$. Now, suppose that $x, y \geqslant 0,\|x\|>1$, $0<\lambda<1$, and $x_{\lambda}=\lambda x+(1-\lambda) y \notin B_{1}$. Then we have

$$
\begin{aligned}
\int_{\Omega} \min & \left\{x_{\lambda}, t\left(x_{\lambda}\right)\right\} d \mu \\
& =\left\|x_{\lambda}\right\|-1 \leqslant \lambda(\|x\|-1)+(1-\lambda)(\|y\|-1) \\
& \leqslant \lambda \int_{\Omega} \min \{x, t(x)\} d \mu+(1-\lambda) \int_{\Omega} \min \{y, t(y)\} d \mu \\
& \leqslant \int_{\Omega} \min \left\{x_{\lambda}, \lambda t(x)+(1-\lambda) t(y)\right\} d \mu
\end{aligned}
$$

Since the function

$$
t \rightarrow \int_{\Omega} \min \left\{x_{\lambda}, t\right\} d \mu
$$

is nondecreasing, it follows that

$$
t\left(x_{\lambda}\right) \leqslant \lambda t(x)+(1-\lambda) t(y) .
$$

In view of (3.27), this inequality is also true when either $x_{\lambda} \in B_{1}$, or $x, y \in B_{1}$. Hence the function $x \rightarrow t(x), x \geqslant 0$, is convex. Clearly, if $x \in B_{1}$ then $t(x) \leqslant t(y)$ for all y. Further, suppose that $0 \leqslant x \leqslant y$ and $\|x\|>1$. If $t(x)>t(y)$ then one can use (3.2) together with $A(x) \subseteq A(y)$ to get

$$
1=\int_{A(x)}(x-t(x)) d \mu<\int_{A(y)}(y-t(y)) d \mu=1
$$

Therefore, we have $t(x) \leqslant t(y)$, whenever $0 \leqslant x \leqslant y$. Since, by (3.26)-(3.27), we have $t(|x|)=t(x)$, it follows that

$$
\begin{aligned}
t(\lambda x+(1-\lambda) y) & =t(|\lambda x+(1-\lambda) y|) \\
& \leqslant t(\lambda|x|+(1-\lambda)|y|) \leqslant \lambda t(x)+(1-\lambda) t(y)
\end{aligned}
$$

for all $x, y \in L^{1}(\Omega, \mu)$ and $\lambda \in(0,1)$. Thus the function $x \rightarrow t(x)$ is convex on $L^{1}(\Omega, \mu)$. Moreover, we have $t\left(B_{1}\right)=\{0\}$. Therefore, in view of Theorem 1.3 [2, p. 90], the function $x \rightarrow t(x)$ is continuous on $L^{1}(\Omega, \mu)$, which completes the proof of the lemma.

Proof of Theorem 3.3. First we prove continuity of the orthogonal selection T. For this purpose, note that the formula (3.4) directly yields $T(|x|)=|T x|$. Hence it is sufficient to prove continuity of T only for $x \geqslant 0$. For this purpose, suppose that $x \geqslant 0$ and $x_{n} \rightarrow x$ in $L^{1}(\Omega, \mu)$. In view of (3.25), we can assume that $\|x\|>1$ and $\left\|x_{n}\right\|>1$. Then by (3.4) we get

$$
\begin{align*}
\left\|T x-T\left(x_{n}\right)\right\| \leqslant & \int_{A(x) \cap A\left(x_{n}\right)}\left|x-t(x)-x_{n}+t\left(x_{n}\right)\right| d \mu \\
& +\int_{\left(\Omega \backslash A\left(x_{n}\right)\right) \cap A(x)}(x-t(x)) d \mu \\
& +\int_{(\Omega \backslash A(x)) \cap A\left(x_{n}\right)}\left(\left|x_{n}\right|-t\left(x_{n}\right)\right) d \mu . \tag{3.28}
\end{align*}
$$

Next, take ε such that $0<\varepsilon<t(x)$. Since $\left\|x_{n}\right\| \rightarrow\|x\|$ and $t\left(x_{n}\right) \rightarrow t(x)$, there exists an integer n_{ε} such that

$$
\left\|x_{n}\right\| \leqslant\|x\|+\varepsilon \quad \text { and } \quad t(x)-\varepsilon \leqslant t\left(x_{n}\right) \leqslant t(x)+\varepsilon
$$

for every $n \geqslant n_{\varepsilon}$. If $n \geqslant n_{\varepsilon}$ then we have

$$
x(s)-t(x) \leqslant x(s)-t\left(x_{n}\right)+\varepsilon<x(s)-x_{n}(s)+\varepsilon \leqslant\left|x(s)-x_{n}(s)\right|+\varepsilon,
$$

whenever $s \in\left(\Omega \backslash A\left(x_{n}\right)\right) \cap A(x)$, and

$$
\left|x_{n}(s)\right|-t\left(x_{n}\right) \leqslant\left|x_{n}(s)\right|-t(x)+\varepsilon<\left|x_{n}(s)\right|-x(s)+\varepsilon \leqslant\left|x(s)-x_{n}(s)\right|+\varepsilon
$$

for all $s \in(\Omega \backslash A(x)) \cap A\left(x_{n}\right)$. Additionally, we have

$$
\begin{aligned}
(t(x)-\varepsilon) \mu\left(A\left(x_{n}\right)\right) & \leqslant \int_{A\left(x_{n}\right)} t\left(x_{n}\right) d \mu \\
& \leqslant \int_{A\left(x_{n}\right)}\left|x_{n}(s)\right| d \mu \leqslant\left\|x_{n}\right\| \leqslant\|x\|+\varepsilon .
\end{aligned}
$$

Now, we can insert these three inequalities into (3.28) to get

$$
\begin{aligned}
\left\|T x-T\left(x_{n}\right)\right\| \leqslant & 3\left\|x-x_{n}\right\|+\left|t(x)-t\left(x_{n}\right)\right| \mu(A(x)) \\
& +\varepsilon\left[\mu(A(x))+\frac{\|x\|+\varepsilon}{t(x)-\varepsilon}\right]
\end{aligned}
$$

for all $n \geqslant n_{\varepsilon}$. Since $\mu(A(x))<\infty$, we can let $\varepsilon \rightarrow 0$ to finish the proof of continuity of T on $L^{1}(\Omega, \mu)$.

If $x, y \in L^{1}(\Omega, \mu)$, then one can find sequences x_{n} and y_{n} of μ-integrable simple functions such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ in the metric of $L^{1}(\Omega, \mu)$. Moreover, for each n, we can embed x_{n} and y_{n} in a finite dimensional subspace of μ-integrable simple functions of the form

$$
\sum_{k=1}^{v_{n}} \alpha_{k} \chi_{A_{k}} / \mu\left(A_{k}\right) ; \quad \alpha_{k} \in \mathbf{R}
$$

where $\mu\left(A_{k}\right)>0$ and $A_{k} \cap A_{j}=\phi$ for $k \neq j$. Since this subspace is isometrically isomorphic with l_{n}^{1}, we can use Lemma 3.3 to get

$$
\left\|T\left(x_{n}\right)-T\left(y_{n}\right)\right\| \leqslant \frac{2\left(r_{n}-1\right)}{r_{n}}\left\|x_{n}-y_{n}\right\|
$$

By continuity of T, it follows that

$$
\|T x-T y\| \leqslant 2\|x-y\|
$$

i.e., $K_{T}\left(L^{1}(\Omega, \mu)\right) \leqslant 2$. On the other hand, the infinite dimensional Banach space $L^{1}(\Omega, \mu)$ contains the n-dimensional subspaces $l_{n}^{1}(A)(n=2,3, \ldots)$ of μ-integrable simple functions x of the form

$$
x=\sum_{k=1}^{n} x_{k} \chi_{A_{k}} / \mu\left(A_{k}\right), \quad x_{k} \in \mathbf{R}
$$

where $\mu\left(A_{k}\right)>0$ and $A_{k} \cap A_{j}=\phi$ for $k \neq j$. Hence Lemma 3.2 yields $K_{T}\left(L^{1}(\Omega, \mu)\right)=2$.

To show the optimality of T, let P be a selection of the metric projection $\mathscr{P}: L^{1}(\Omega, \mu) \rightarrow 2^{B_{1}}$. Moreover, suppose that $x \in l_{n}^{1}(A)$ is defined by

$$
\begin{equation*}
x=\frac{1}{n-1} \sum_{k=1}^{n} \chi_{A_{k}} / \mu\left(A_{k}\right) \tag{3.29}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
P x(s)=0 \tag{3.30}
\end{equation*}
$$

almost everywhere on $\Omega \backslash A$, where

$$
A=\bigcup_{k=1}^{n} A_{k}
$$

Indeed, suppose that $P x(s) \neq 0$ on a measurable subset C of $\Omega \backslash A$ such that $\mu(C)>0$. Since P is a selection of \mathscr{P}, we have $\|P x\|=1$ and

$$
\|x-P x\| \leqslant\|x-y\|
$$

for all $y \in B_{1}$. Equivalently, in view of the Kolmogorov criterion [16], we have

$$
\tau_{x}(y):=\int_{Z}|P x-y| d \mu+\int_{s \backslash \backslash Z}(P x-y) \operatorname{sgn}(x-P x) d \mu \geqslant 0
$$

for all $y \in B_{1}$, where

$$
Z=\{s \in \Omega: x(s)=P x(s)\}
$$

In particular, if $y=\chi_{\Omega \backslash \backslash C} P x$ then $\|y\| \leqslant\|P x\|=1$ and

$$
\tau_{x}(y)=-\int_{C}|P x| d \mu<0
$$

This contradiction proves (3.30). Since $\|P x\|=1$, it follows from (3.30) that $z_{j} \geqslant 1 / n$ for some j, where $z=\left(z_{1}, \ldots, z_{n}\right),\|z\|=1$, and

$$
z_{k}=\int_{A_{k}}|P x| d \mu, \quad k=1, \ldots, n
$$

Define $y^{j} \in l_{n}^{1}(A)$ by

$$
y^{j}=\frac{1}{n-1} \sum_{\substack{k=1 \\ k \neq j}}^{n} \chi_{A_{k}} / \mu\left(A_{k}\right)
$$

and note that

$$
\begin{equation*}
\left\|y^{j}\right\|=1 \quad \text { and } \quad\left\|x-y^{j}\right\|=\frac{1}{n-1} \tag{3.31}
\end{equation*}
$$

Moreover, as in the proof of Lemma 3.2, we show that

$$
T x=\frac{1}{n} \sum_{k=1}^{n} \chi_{A_{k}} / \mu\left(A_{k}\right)
$$

where x is defined by (3.29). Hence we get

$$
\begin{equation*}
\left\|T x-y^{j}\right\|=\frac{2}{n} \tag{3.32}
\end{equation*}
$$

and

$$
\begin{aligned}
\left\|P x-y^{j}\right\| & =\int_{A_{j}}|P x| d \mu+\sum_{i \neq j} \int_{A_{i}}\left|P x-y^{j}\right| d \mu \\
& \geqslant \int_{A_{j}}|P x| d \mu+\sum_{i \neq j}\left|\int_{A_{i}}\left(|P x|-\left|y^{j}\right|\right) d \mu\right| \\
& =z_{j}+\sum_{i \neq j}\left|z_{i}-\frac{1}{n-1}\right|
\end{aligned}
$$

Now, we can repeat mutatis mutandis the second part of the proof of Theorem 3.2 to get

$$
\left\|P x-y^{j}\right\| \geqslant \frac{2}{n}
$$

Hence it follows from (3.31) and (3.32) that

$$
\left\|P x-P y^{j}\right\|=\left\|P x-y^{j}\right\| \geqslant\left\|T x-T y^{j}\right\|=\frac{2(n-1)}{n}\left\|x-y^{j}\right\|
$$

for every selection P of \mathscr{P}. Since n can be arbitrarily large, we have $K_{y P}\left(L^{i}(\Omega, \mu)\right) \geqslant 2$, which completes the proof of the optimality of T. Finally, by (3.6) we have

$$
T(x)=T(\alpha x+(1-\alpha) T x), \quad \alpha \geqslant 0
$$

for every μ-integrable simple function x. Since the set of all such functions is dense in $L^{1}(\Omega, \mu)$, we can use continuity of T to prove the sunny property for T.

Recall that we have $K_{R}\left(L^{1}(\Omega, \mu)\right)=2$ for the radial selection R of the metric projection $\mathscr{P}: L^{1}(\Omega, \mu) \rightarrow 2^{B_{1}}$. Clearly, R is also sunny. Therefore, it follows from Theorem 3.3 that Theorem 2.2 is not true for the infinite dimensional Banach space $L^{1}(\Omega, \mu)$. Finally, note that the orthogonal selection $T: l^{1} \rightarrow B_{1}$ differs from the radial selection R by its finite dimensional behaviour. More precisely, if $x \in l^{1}$ and $\|x\|>1$, then by (3.4) we have

$$
T x=\left(T x_{1}, \ldots, T x_{n}, 0,0, \ldots\right)
$$

where $n=\max \left\{k:\left|x_{k}\right|>t(x)\right\}<\infty$. However, this is not true for $R x=x /\|x\|$ in general.

References

1. R. B. Ash, "Real Analysis and Probability." Academic Press, New York, 1972.
2. V. Barbu and Th. Precupanu, "Convexity and Optimization in Banach Spaces," Reidel, Boston, 1986.
3. M. Baronti, On some parameters of normed spaces, Boll. Un. Mat. Ital. B(5) 18 (1981), 1065-1085.
4. M. Baronti and P. L. Papini, Projections, skewness and related constants in real normed spaces, Math. Pannon. 3 (1992), 31-47.
5. J. Desbiens, Constante rectangle et biais d'un espace de Banach, Bull. Austral. Math. Soc. 42 (1990), 465-482.
6. J. Desbiens, Sur le biais d'un espace de Banach, Ann. Sci. Math. Québec 14 (1990), 131-143.
7. K. Fan, Extentions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969), 234-240.
8. D. G. De Figueiredo and L. A. Karlovitz, On the radial projection in normed spaces, Bull. Amer. Math. Soc. 73 (1967), 364368.
9. C. Franchetti, On the radial projection in Banach spaces, in "Approximation Theory III" (E. W. Cheney, Ed.), pp. 425-428, Academic Press, New York, 1980.
10. C. Franchetti, The norm of the minimal projection onto hyperplanes in $L^{1}[0,1]$ and the radial constant, Boll. Un. Mat. Ital. B (7) 4 (1990), 803-821.
11. K. Goebel and W. A. Kirk, "Topics in Metric Fixed Point Theory," Cambridge Univ. Press, Cambridge, 1990.
12. K. Goebel and T. Komorowski, Retracting balls into spheres, and minimal displacement problems, in "Fixed Point Theory and Applications" (M. A. Thera and J. B. Baillon, Eds.), pp. 155-172, Longman, New York, 1991.
13. K. Goebel and S. Reich, "Uniform Convexity. Hyperbolic Geometry, and Nonexpansive Mappings," Dekker, New York, 1984.
14. H. K. Hsiao and R. Smarzewski, Radial and optimal selections of metric projections onto balls, Ann. Univ. Mariae Curie-Sklodowska Sect. A 47 (1993), 45-60.
15. O. P. Kapoor and S. B. Mathur, Metric projection bound and the Lipschitz constant of the radial retraction, J. Approx. Theory 38 (1983), 66-70.
16. I. Singer, "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces," Springer-Verlag, Berlin, 1970.
17. R. Smarzewski, Strongly unique best approximation in Banach spaces, II, J. Approx. Theory 51 (1987), 202-217.
18. R. L. Thele, Some results on radial projection in Banach spaces, Proc. Amer. Math. Soc. 42 (1974), 483-486.
